

 Phoenix LiveView

 v0.19.3

 Table of contents

 	Changelog

 	Introduction

 	Installation

 	Welcome

 	Server-side features

 	Assigns and HEEx templates

 	Deployments

 	Error and exception handling

 	Live layouts

 	Live navigation

 	Security considerations

 	Telemetry

 	Uploads

 	Gettext for internationalization

 	Client-side integration

 	Bindings

 	DOM patching

 Changelog - Phoenix LiveView v0.19.3

Changelog

0.19.3 (2023-06-21)
Bug fixes
	Fix push_event inside component update not being sent in some cases
	Bring back accidentally deprecated upload_errors/1

0.19.2 (2023-06-12)
Bug fixes
	Fix issue when <input name="value" /> is used

0.19.1 (2023-06-06)
Enhancements
	Allow accept attribute on <.live_file_input> to override default values

Bug fixes
	Fix issue causing anchor clicks to disconnect LV when they were already handled via preventDefault() by other scripts

0.19.0 (2023-05-29)
Backwards incompatible changes
	Drop support for passing an id to the phx-feedback-for attribute. An input name must be passed instead.
	Remove previously deprecated let attribute. Use :let instead
	Remove previously deprecated <%= live_img_preview(entry) %>. Use <.live_img_preview entry={entry} /> instead
	Remove previously deprecated <%= live_file_input(upload) %>. Use <.live_file_input upload={upload} /> instead
	Remove previously deprecated <%= live_component(Component) %>. Use <.live_component module={Component} id=\"hello\" /> instead

Enhancements
	Support stream resets with bulk insert operations
	Support ordered inputs within inputs_for, to pair with Ecto's new sort_param and drop_param casting
	Send form phx-value's on form events

Deprecations
	Deprecate passing :dom_id to stream/4 in favor of stream_configure/3
	Deprecate render_block/2 in favor of render_slot/2
	Deprecate <%= live_img_preview(entry, opts) %>. Use <.live_img_preview entry={entry} {opts} />
	Deprecate <%= live_file_input(upload, opts) %>. Use <.live_file_input upload={upload} {opts} />
	Deprecate stateless LiveComponent in favor of function components or in favor of <.live_component id={...} /> (note the id is required)

Bug fixes
	Fix LiveView disconnects when clicking a download link
	Fix stream deletes not being sent on nested for comprehensions
	Fix phx-disconnected bindings not firing on mount failures
	Support form recovery on forms with only hidden inputs

0.18.18 (2023-03-16)
Bug fixes
	Allow :live_action to be assigned in a component
	Only filter internal function component attributes in assigns_to_attributes
	Only include submitter with name

Enhancements
	Add JS.exec command for executing commands defined on other element attributes

0.18.17 (2023-03-09)
Bug Fixes
	Fix callbacks like handle_info failing to be invoked in development after a code change with the Phoenix code reloader

Enhancements
	Support submitter on form submit events.
	Avoid compile-time dependency for attr when referencing structs
	Validate reserved assigns. Attempting to assign :uploads, :streams, :live_action, :socket, :myself will now raise in LiveView and LiveComponent

0.18.16 (2023-02-23)
Enhancements
	Support streams in Live Components
	Optimize plug error translation when a Plug.Exception is raised over connected LiveView

Bug Fixes
	Fix formatter issues when there are multiple HTML comments

0.18.15 (2023-02-16)
Bug Fixes
	Fix JS.transition applying incorrect classes

Enhancements
	Reset phx-feedback-for errors on type="reset" inputs and buttons

0.18.14 (2023-02-14)
Bug Fixes
	Fix LiveViewTest failing to find main live view

0.18.13 (2023-02-10)
Enhancements
	Improve error message when failing to use Phoenix.Component

0.18.12 (2023-02-10)
Enhancements
	Introduce streams for efficiently handling large collections
	Allow replies from :handle_event lifecycle hooks
	Add <.inputs_for> component to Phoenix.Component
	Support replies on lifecycle :handle_event hooks

Bug Fixes
	Fix change tracking when re-assigning a defaulted attribute to same default value
	Fix upload drag and drop failing to worka after using file select dialog
	Fix form recovery when form's first input is phx-change

0.18.11 (2023-01-19)
Bug Fixes
	Fix socket unloading connection for forms that have defaulted prevented

0.18.10 (2023-01-18)
Bug Fixes
	Fix svg tags with href incorrectly unloading socket on click
	Fix form submits with target="_blank" incorrectly unloading socket on submit

0.18.9 (2023-01-17)
Bug Fixes
	Fix regular form submits failing to be dispatched

0.18.8 (2023-01-16)
Enhancements
	Restore scroll position on back when previous navigation was live patch

Bug Fixes
	Fix live layout not being applied until connected render

0.18.7 (2023-01-13)
Bug Fixes
	Fix live layout not being applied when passed to :live_session during disconnect render
	Fix external anchor clicks and links with hashes incorrectly unloading socket

0.18.6 (2023-01-09)
Bug Fixes
	Fix external anchor click unloading on external click

0.18.5 (2023-01-09)
Bug Fixes
	Fix external anchor click unloading socket

0.18.4 (2023-01-05)
Enhancements
	Support string upload name to support dynamically generated allow_upload's

Bug Fixes
	Fix nested LiveView race condition on live patch causing nested child to skip updates in some cases
	Fix browser history showing incorrect title when using live navigation with @page_title
	Fix undefined _target param when using JS.push for form changes
	Fix phx-no-feedback missing from inputs added after a form submit
	Fix phx-disconnected events firing when navigating away or submitting external forms

0.18.3 (2022-10-26)
Enhancements
	Add embed_templates to Phoenix.Component for embedding template files as function components
	Raise on global slot attributes

Bug Fixes
	Fix bug on slots when passing multiple slot entries with mix if/for syntax

0.18.2 (2022-10-04)
Bug Fixes
	Fix match error when defining :values before :default
	Allow tuples in external redirects
	Fix race condition on dispatching click away when enter is pressed
	Fix formatter breaking inline blocks when surrounded by text without whitespace

Enhancements
	Add intersperse component for rendering a separator between an enumerable

0.18.1 (2022-09-28)
Bug Fixes
	Fix phx-loading class being applied to dead views
	Fix <.live_img_preview /> causing invalid attribute errors on uploads
	Do not fire phx events when element is disabled

Enhancements
	Support :include option to extend global attributes on a case-by-case basis
	Warn when accessing a variable binding defined outside of ~H

0.18.0 (2022-09-20)
LiveView v0.18 includes a major new feature in the form of declarative assigns with new attr
and slot APIs for specifying which attributes a function component supports, the type,
and default values. Attributes and slots are compile-time verified and emit warnings (requires Elixir v1.14.0+).
v0.18 includes a number of new function components which replace their EEx expression
counterparts <%= ... %>. For example, live_redirect, live_patch, and Phoenix.HTML's
link have been replaced by a unified Phoenix.Component.link/1 function component:
<.link href="https://myapp.com">my app</.link>
<.link navigate={@path}>remount</.link>
<.link patch={@path}>patch</.link>
Those new components live in the Phoenix.Component module. Phoenix.LiveView.Helpers
itself has been soft deprecated and all relevant functionality has been migrated.
You must import Phoenix.Component where you previously imported Phoenix.LiveView.Helpers
when upgrading. You may also need to import Phoenix.Component where you also imported Phoenix.LiveView and some of its functions have been moved to Phoenix.Component.
Additionally, the special let attribute on function components have been deprecated by
a :let usage.
Deprecations
	live_redirect - deprecate in favor of new <.link navigate={..}> component of Phoenix.Component
	live_patch - deprecate in favor of new <.link patch={..}> component of Phoenix.Component
	push_redirect - deprecate in favor of new push_navigate function on Phoenix.LiveView

Enhancements
	[Component] Add declarative assigns with compile-time verifications and warnings via attr/slot
	[Component] Add new attrs :let and :for, and :if with HTML tag, function component, and slot support. We still support let but the formatter will convert it to :let and soon it will be deprecated.
	[Component] Add dynamic_tag function component
	[Component] Add link function component
	[Component] Add focus_wrap function component to wrap focus around content like modals and dialogs for accessibility
	[Logger] Add new LiveView logger with telemetry instrumentation for lifecycle events
	[JS] Add new JS commands for focus, focus_first, push_focus, and pop_focus for accessibility
	[Socket] Support sharing Phoenix.LiveView.Socket with regular channels via use Phoenix.LiveView.Socket
	Add _live_referer connect param for handling push_navigate referal URL
	Add new phx-connected and phx-disconnected bindings for reacting to lifecycle changes
	Add dead view support for JS commands
	Add dead view support for hooks

Bug fixes
	Fix external upload issue where listeners are not cleaned up when an external failure happens on the client
	Do not debounce phx-blur

0.17.12 (2022-09-20)
Enhancements
	Add support for upcoming Phoenix 1.7 flash interface

0.17.11 (2022-07-11)
Enhancements
	Add replaceTransport to LiveSocket

Bug fixes
	Cancel debounced events from firing after a live navigation event
	Fix hash anchor failing to scroll to anchor element on live navigation
	Do not debounce phx-blur events

0.17.10 (2022-05-25)
Bug fixes
	[Formatter] Preserve single quote delimiter on attrs
	[Formatter] Do not format inline elements surrounded by texts without whitespaces
	[Formatter] Keep text and eex along when there isn't a whitespace
	[Formatter] Fix intentional line breaks after eex expressions
	[Formatter] Handle self close tags as inline
	[Formatter] Do not format inline elements without whitespaces among them
	[Formatter] Do not format when attr contenteditable is present

Enhancements
	[Formatter] Introduce special attr phx-no-format to skip formatting

0.17.9 (2022-04-07)
Bug fixes
	Fix sticky LiveViews failing to be patched during live navigation
	Do not raise on dynamic phx-update value

0.17.8 (2022-04-06)
Enhancements
	Add HEEx formatter
	Support phx-change on individual inputs
	Dispatch MouseEvent on client
	Add :bubbles option to JS.dispatch to control event bubbling
	Expose underlying liveSocket instance on hooks
	Enable client debug by default on localhost

Bug fixes
	Fix hook and sticky LiveView issues caused by back-to-back live redirects from mount
	Fix hook destroyed callback failing to be invoked for children of phx-remove in some cases
	Do not failsafe reload the page on push timeout if disconnected
	Do not bubble navigation click events to regular phx-click's
	No longer generate csrf_token for forms without action, reducing the payload during phx-change/phx-submit events

0.17.7 (2022-02-07)
Enhancements
	Optimize nested for comprehension diffs

Bug fixes
	Fix error when live_redirect links are clicked when not connected in certain cases

0.17.6 (2022-01-18)
Enhancements
	Add JS.set_attribute and JS.remove_attribute
	Add sticky: true option to live_render to maintain a nested child on across live redirects
	Dispatch phx:show-start, phx:show-end, phx:hide-start and phx:hide-end on JS.show|hide|toggle
	Add get_connect_info/2 that also works on disconnected render
	Add LiveSocket constructor options for configuration failsafe behavior via new maxReloads, reloadJitterMin, reloadJitterMax, failsafeJitter options

Bug fixes
	Show form errors after submit even when no changes occur on server
	Fix phx-disable-with failing to disable elements outside of forms
	Fix phx ref tracking leaving elements in awaiting state when targeting an external LiveView
	Fix diff on response failing to await for active transitions in certain cases
	Fix phx-click-away not respecting phx-target
	Fix "disconnect" broadcast failing to failsafe refresh the page
	Fix JS.push with :target failing to send to correct component in certain cases

Deprecations
	Deprecate Phoenix.LiveView.get_connect_info/1 in favor of get_connect_info/2
	Deprecate Phoenix.LiveViewTest.put_connect_info/2 in favor of calling the relevant functions in Plug.Conn
	Deprecate returning "raw" values from upload callbacks on Phoenix.LiveView.consume_uploaded_entry/3 and Phoenix.LiveView.consume_uploaded_entries/3. The callback must return either {:ok, value} or {:postpone, value}. Returning any other value will emit a warning.

0.17.5 (2021-11-02)
Bug fixes
	Do not trigger phx-click-away if element is not visible
	Fix phx-remove failing to tear down nested live children

0.17.4 (2021-11-01)
Bug fixes
	Fix variable scoping issues causing various content block or duplication rendering bugs

0.17.3 (2021-10-28)
Enhancements
	Support 3-tuple for JS class transitions to support staged animations where a transition class is applied with a starting and ending class
	Allow JS commands to be executed on DOM nodes outside of the LiveView container

Optimization
	Avoid duplicate statics inside comprehension. In previous versions, comprehensions were able to avoid duplication only in the content of their root. Now we recursively traverse all comprehension nodes and send the static only once for the whole comprehension. This should massively reduce the cost of sending comprehensions over the wire

Bug fixes
	Fix HTML engine bug causing expressions to be duplicated or not rendered correctly
	Fix HTML engine bug causing slots to not be re-rendered when they should have
	Fix form recovery being sent to wrong target

0.17.2 (2021-10-22)
Bug fixes
	Fix HTML engine bug causing attribute expressions to be incorrectly evaluated in certain cases
	Fix show/hide/toggle custom display not being restored
	Fix default to target for JS.show|hide|dispatch
	Fix form input targeting

0.17.1 (2021-10-21)
Bug fixes
	Fix SVG element support for phx binding interactions

0.17.0 (2021-10-21)
Breaking Changes
on_mount changes
The hook API introduced in LiveView 0.16 has been improved based on feedback.
LiveView 0.17 removes the custom module-function callbacks for the
Phoenix.LiveView.on_mount/1 macro and the :on_mount option for
Phoenix.LiveView.Router.live_session/3 in favor of supporting a custom
argument. For clarity, the module function to be invoked during the mount
lifecycle stage will always be named on_mount/4.
For example, if you had invoked on_mount/1 like so:
on_mount MyAppWeb.MyHook
on_mount {MyAppWeb.MyHook, :assign_current_user}
and defined your callbacks as:
my_hook.ex

def mount(_params, _session, _socket) do
end

def assign_current_user(_params, _session, _socket) do
end
Change the callback to:
my_hook.ex

def on_mount(:default, _params, _session, _socket) do
end

def on_mount(:assign_current_user, _params, _session, _socket) do
end
When given only a module name, the first argument to on_mount/4 will be the
atom :default.
LEEx templates in stateful LiveComponents
Stateful LiveComponents (where an :id is given) must now return HEEx templates
(~H sigil or .heex extension). LEEx templates (~L sigil or .leex extension)
are no longer supported. This addresses bugs and allows stateful components
to be rendered more efficiently client-side.
phx-disconnected class has been replaced with phx-loading
Due to a bug in the newly released Safari 15, the previously used .phx-disconnected class has been replaced by a new .phx-loading class. The reason for the change is phx.new included a .phx-disconnected rule in the generated app.css which triggers the Safari bug. Renaming the class avoids applying the erroneous rule for existing applications. Folks can upgrade by simply renaming their .phx-disconnected rules to .phx-loading.
phx-capture-click has been deprecated in favor of phx-click-away
The new phx-click-away binding replaces phx-capture-click and is much more versatile because it can detect "click focus" being lost on containers.
Removal of previously deprecated functionality
Some functionality that was previously deprecated has been removed:
	Implicit assigns in live_component do-blocks is no longer supported
	Passing a @socket to live_component will now raise if possible

Enhancements
	Allow slots in function components: they are marked as <:slot_name> and can be rendered with <%= render_slot @slot_name %>
	Add JS command for executing JavaScript utility operations on the client with an extended push API
	Optimize string attributes:	If the attribute is a string interpolation, such as <div class={"foo bar #{@baz}"}>, only the interpolation part is marked as dynamic
	If the attribute can be empty, such as "class" and "style", keep the attribute name as static

	Add a function component for rendering Phoenix.LiveComponent. Instead of <%= live_component FormComponent, id: "form" %>, you must now do: <.live_component module={FormComponent} id="form" />

Bug fixes
	Fix LiveViews with form recovery failing to properly mount following a reconnect when preceded by a live redirect
	Fix stale session causing full redirect fallback when issuing a push_redirect from mount
	Add workaround for Safari bug causing tags with srcset and video with autoplay to fail to render
	Support EEx interpolation inside HTML comments in HEEx templates
	Support HTML tags inside script tags (as in regular HTML)
	Raise if using quotes in attribute names
	Include the filename in error messages when it is not possible to parse interpolated attributes
	Make sure the test client always sends the full URL on live_patch/live_redirect. This mirrors the behaviour of the JavaScript client
	Do not reload flash from session on live_redirects
	Fix select drop-down flashes in Chrome when the DOM is patched during focus

Deprecations
	<%= live_component MyModule, id: @user.id, user: @user %> is deprecated in favor of <.live_component module={MyModule} id={@user.id} user={@user} />. Notice the new API requires using HEEx templates. This change allows us to further improve LiveComponent and bring new features such as slots to them.
	render_block/2 in deprecated in favor of render_slot/2

0.16.4 (2021-09-22)
Enhancements
	Improve HEEx error messages
	Relax HTML tag validation to support mixed case tags
	Support self closing HTML tags
	Remove requirement for handle_params to be defined for lifecycle hooks

Bug fixes
	Fix pushes failing to include channel join_ref on messages

0.16.3 (2021-09-03)
Bug fixes
	Fix on_mount hooks calling view mount before redirecting when the hook issues a halt redirect.

0.16.2 (2021-09-03)
Enhancements
	Improve error messages on tokenization
	Improve error message if @inner_block is missing

Bug fixes
	Fix phx-change form recovery event being sent to wrong component on reconnect when component order changes

0.16.1 (2021-08-26)
Enhancements
	Relax phoenix_html dependency requirement
	Allow testing functional components by passing a function reference
to Phoenix.LiveViewTest.render_component/3

Bug fixes
	Do not generate CSRF tokens for non-POST forms
	Do not add compile-time dependencies on on_mount declarations

0.16.0 (2021-08-10)
Security Considerations Upgrading from 0.15
LiveView v0.16 optimizes live redirects by supporting navigation purely
over the existing WebSocket connection. This is accomplished by the new
live_session/3 feature of Phoenix.LiveView.Router. The
security guide has always stressed
the following:
... As we have seen, LiveView begins its life-cycle as a regular HTTP
request. Then a stateful connection is established. Both the HTTP
request and the stateful connection receives the client data via
parameters and session. This means that any session validation must
happen both in the HTTP request (plug pipeline) and the stateful
connection (LiveView mount) ...

These guidelines continue to be valid, but it is now essential that the
stateful connection enforces authentication and session validation within
the LiveView mount lifecycle because a live_redirect from the client
will not go through the plug pipeline as a hard-refresh or initial HTTP
render would. This means authentication, authorization, etc that may be
done in the Plug.Conn pipeline must also be performed within the
LiveView mount lifecycle.
Live sessions allow you to support a shared security model by allowing
live_redirects to only be issued between routes defined under the same
live session name. If a client attempts to live redirect to a different
live session, it will be refused and a graceful client-side redirect will
trigger a regular HTTP request to the attempted URL.
See the Phoenix.LiveView.Router.live_session/3 docs for more information
and example usage.
New HTML Engine
LiveView v0.16 introduces HEEx (HTML + EEx) templates and the concept of function
components via Phoenix.Component. The new HEEx templates validate the markup in
the template while also providing smarter change tracking as well as syntax
conveniences to make it easier to build composable components.
A function component is any function that receives a map of assigns and returns
a ~H template:
defmodule MyComponent do
 use Phoenix.Component

 def btn(assigns) do
 ~H"""
 <button class="btn"><%= @text %></button>
 """
 end
end
This component can now be used as in your HEEx templates as:
<MyComponent.btn text="Save">
The introduction of HEEx and function components brings a series of deprecation
warnings, some introduced in this release and others which will be added in the
future. Note HEEx templates require Elixir v1.12+.
Upgrading and deprecations
The main deprecation in this release is that the ~L sigil and the .leex extension
are now soft-deprecated. The docs have been updated to discourage them and using them
will emit warnings in future releases. We recommend using the ~H sigil and the .heex
extension for all future templates in your application. You should also plan to migrate
the old templates accordingly using the recommendations below.
Migrating from LEEx to HEEx is relatively straightforward. There are two main differences.
First of all, HEEx does not allow interpolation inside tags. So instead of:
<div id="<%= @id %>">
 ...
</div>
One should use the HEEx syntax:
<div id={@id}>
 ...
</div>
The other difference is in regards to form_for. Some templates may do the following:
~L"""
<%= f = form_for @changeset, "#" %>
 <%= input f, :foo %>
</form>
"""
However, when converted to ~H, it is not valid HTML: there is a </form> tag but
its opening is hidden inside the Elixir code. On LiveView v0.16, there is a function
component named form:
~H"""
<.form :let={f} for={@changeset}>
 <%= input f, :foo %>
</.form>
"""
We understand migrating all templates from ~L to ~H can be a daunting task.
Therefore we plan to support ~L in LiveViews for a long time. However, we can't
do the same for stateful LiveComponents, as some important client-side features and
optimizations will depend on the ~H sigil. Therefore our recommendation is to
replace ~L by ~H first in live components, particularly stateful live components.
Furthermore, stateless live_component (i.e. live components without an :id)
will be deprecated in favor of the new function components. Our plan is to support
them for a reasonable period of time, but you should avoid creating new ones in
your application.
Breaking Changes
LiveView 0.16 removes the :layout and :container options from
Phoenix.LiveView.Routing.live/4 in favor of the :root_layout
and :container options on Phoenix.Router.live_session/3.
For instance, if you have the following in LiveView 0.15 and prior:
live "/path", MyAppWeb.PageLive, layout: {MyAppWeb.LayoutView, "custom_layout.html"}
Change it to:
live_session :session_name, root_layout: {MyAppWeb.LayoutView, "custom_layout.html"} do
 live "/path", MyAppWeb.PageLive
end
On the client, the phoenix_live_view package no longer provides a default export for LiveSocket.
If you have the following in your JavaScript entrypoint (typically located at assets/js/app.js):
import LiveSocket from "phoenix_live_view"
Change it to:
import { LiveSocket } from "phoenix_live_view"
Additionally on the client, the root LiveView element no longer exposes the
LiveView module name, therefore the phx-view attribute is never set.
Similarly, the viewName property of client hooks has been removed.
Codebases calling a custom function component/3 should rename it or specify its module to avoid a conflict,
as LiveView introduces a macro with that name and it is special cased by the underlying engine.
Enhancements
	Introduce HEEx templates
	Introduce Phoenix.Component
	Introduce Phoenix.Router.live_session/3 for optimized live redirects
	Introduce on_mount and attach_hook hooks which provide a mechanism to tap into key stages of the LiveView lifecycle
	Add upload methods to client-side hooks
	[Helpers] Optimize live_img_preview rendering
	[Helpers] Introduce form function component which wraps Phoenix.HTML.form_for
	[LiveViewTest] Add with_target for scoping components directly
	[LiveViewTest] Add refute_redirected
	[LiveViewTest] Support multiple phx-target values to mirror JS client
	[LiveViewTest] Add follow_trigger_action
	[JavaScript Client] Add sessionStorage option LiveSocket constructor to support client storage overrides
	[JavaScript Client] Do not failsafe reload the page in the background when a tab is unable to connect if the page is not visible

Bug fixes
	Make sure components are loaded on render_component to ensure all relevant callbacks are invoked
	Fix Phoenix.LiveViewTest.page_title returning nil in some cases
	Fix buttons being re-enabled when explicitly set to disabled on server
	Fix live patch failing to update URL when live patch link is patched again via handle_params within the same callback lifecycle
	Fix phx-no-feedback class not applied when page is live-patched
	Fix DOMException, querySelector, not a valid selector when performing DOM lookups on non-standard IDs
	Fix select dropdown flashing close/opened when assigns are updated on Chrome/macOS
	Fix error with multiple live_file_input in one form
	Fix race condition in showError causing null querySelector
	Fix statics not resolving correctly across recursive diffs
	Fix no function clause matching in Phoenix.LiveView.Diff.many_to_iodata
	Fix upload input not being cleared after files are uploaded via a component
	Fix channel crash when uploading during reconnect
	Fix duplicate progress events being sent for large uploads

Deprecations
	Implicit assigns when passing a do-end block to live_component is deprecated
	The ~L sigil and the .leex extension are now soft-deprecated in favor of ~H and .heex
	Stateless live components (a live_component call without an :id) are deprecated in favor of the new function component feature

0.15.7 (2021-05-24)
Bug fixes
	Fix broken webpack build throwing missing morphdom dependency

0.15.6 (2021-05-24)
Bug fixes
	Fix live patch failing to update URL when live patch link is patched again from handle_params
	Fix regression in LiveViewTest.render_upload/3 when using channel uploads and progress callback
	Fix component uploads not being cleaned up on remove
	Fix KeyError on LiveView reconnect when an active upload was previously in progress

Enhancements
	Support function components via component/3
	Optimize progress events to send less messages for larger file sizes
	Allow session and local storage client overrides

Deprecations
	Deprecate @socket/socket argument on live_component/3 call

0.15.5 (2021-04-20)
Enhancements
	Add upload_errors/1 for returning top-level upload errors

Bug fixes
	Fix consume_uploaded_entry/3 with external uploads causing inconsistent entries state
	Fix push_event losing events when a single diff produces multiple events from different components
	Fix deep merging of component tree sharing

0.15.4 (2021-01-26)
Bug fixes
	Fix nested live_render's causing remound of child LiveView even when ID does not change
	Do not attempt push hook events unless connected
	Fix preflighted refs causing auto_upload: true to fail to submit form
	Replace single upload entry when max_entries is 1 instead of accumulating multiple file selections
	Fix static_path in open_browser failing to load stylesheets

0.15.3 (2021-01-02)
Bug fixes
	Fix push_redirect back causing timeout on the client

0.15.2 (2021-01-01)
Backwards incompatible changes
	Remove beforeDestroy from phx-hook callbacks

Bug fixes
	Fix form recovery failing to send input on first connection failure
	Fix hooks not getting remounted after LiveView reconnect
	Fix hooks reconnected callback being fired with no prior disconnect

0.15.1 (2020-12-20)
Enhancements
	Ensure all click events bubble for mobile Safari
	Run consume_uploaded_entries in LiveView caller process

Bug fixes
	Fix hooks not getting remounted after LiveView recovery
	Fix bug causing reload with jitter on timeout from previously closed channel
	Fix component child nodes being lost when component patch goes from single root node to multiple child siblings
	Fix phx-capture-click triggering on mouseup during text selection
	Fix LiveView push_event's not clearing up in components
	Fix <textarea> being patched by LiveView while focused

0.15.0 (2020-11-20)
Enhancements
	Add live uploads support for file progress, interactive file selection, and direct to cloud support
	Implement Phoenix.LiveViewTest.open_browser/2 that opens up a browser with the LiveView page

Backwards incompatible changes
	Remove @inner_content in components and introduce render_block for rendering component @inner_block
	Remove @live_module in socket templates in favor of @socket.view

Bug fixes
	Make sure URLs are decoded after they are split
	Do not recover forms without inputs
	Fix race condition when components are removed and then immediately re-added before the client can notify their CIDs have been destroyed
	Do not render LiveView if only events/replies have been added to the socket
	Properly merge different components when sharing component subtrees on initial render
	Allow variables inside do-blocks to be tainted
	Fix push_redirect from mount hanging on the client and causing a fallback to full page reload when following a clicked live_redirect on the client

0.14.8 (2020-10-30)
Bug fixes
	Fix compatibility with latest Plug

0.14.7 (2020-09-25)
Bug fixes
	Fix redirect(socket, external: ...) when returned from an event
	Properly follow location hashes on live patch/redirect
	Fix failure in Phoenix.LiveViewTest when phx-update has non-HTML nodes as children
	Fix phx_trigger_action submitting the form before the DOM updates are complete

0.14.6 (2020-09-21)
Bug fixes
	Fix race condition on phx-trigger-action causing reconnects before server form submit

0.14.5 (2020-09-20)
Enhancements
	Optimize DOM prepend and append operations
	Add Phoenix.LiveView.send_update_after/3

Bug fixes
	Fix scroll position when using back/forward with live_redirect's
	Handle recursive components when generating diffs
	Support hard redirects on mount
	Properly track nested components on deletion on Phoenix.LiveViewTest

0.14.4 (2020-07-30)
Bug fixes
	Fix hidden inputs throwing selection range error

0.14.3 (2020-07-24)
Enhancements
	Support render_layout with LiveEEx

Bug fixes
	Fix focused inputs being overwritten by latent patch
	Fix LiveView error when "_target" input name contains array
	Fix change tracking when passing a do-block to components

0.14.2 (2020-07-21)
Bug fixes
	Fix Map of assigns together with @inner_content causing no function clause matching in Keyword.put/3 error
	Fix LiveViewTest failing to patch children properly for append/prepend based phx-update's
	Fix argument error when providing :as option to a live route
	Fix page becoming unresponsive when the server crashes while handling a live patch
	Fix empty diff causing pending data-ref based updates, such as classes and phx-disable-with content to not be updated
	Fix bug where throttling keydown events would eat key presses
	Fix <textarea>'s failing to be disabled on form submit
	Fix text node DOM memory leak when using phx-update append/prepend

Enhancements
	Allow :router to be given to render_component
	Display file on compile warning for ~L
	Log error on client when using a hook without a DOM ID
	Optimize phx-update append/prepend based DOM updates

0.14.1 (2020-07-09)
Bug fixes
	Fix nested live_render's failing to be torn down when removed from the DOM in certain cases
	Fix LEEx issue for nested conditions failing to be re-evaluated

0.14.0 (2020-07-07)
Bug fixes
	Fix IE11 issue where document.activeElement creates a null reference
	Fix setup and teardown of root views when explicitly calling liveSocket.disconnect() followed by liveSocket.connect()
	Fix error_tag failing to be displayed for non-text based inputs such as selects and checkboxes as the phx-no-feedback class was always applied
	Fix phx-error class being applied on live_redirect
	Properly handle Elixir's special variables, such as __MODULE__
	No longer set disconnected class during patch
	Track flash keys to fix back-to-back flashes from being discarded
	Properly handle empty component diffs in the client for cases where the component has already been removed on the server
	Make sure components in nested live views do not conflict
	Fix phx-static not being sent from the client for child views
	Do not fail when trying to delete a view that was already deleted
	Ensure beforeDestroy is called on hooks in children of a removed element

Enhancements
	Allow the whole component static subtree to be shared when the component already exists on the client
	Add telemetry events to mount, handle_params, and handle_event
	Add push_event for pushing events and data from the server to the client
	Add client handleEvent hook method for receiving events pushed from the server
	Add ability to receive a reply to a pushEvent from the server via {:reply, map, socket}
	Use event listener for popstate to avoid conflicting with user-defined popstate handlers
	Log error on client when rendering a component with no direct DOM children
	Make assigns.myself a struct to catch mistakes
	Log if component doesn't exist on send_update, raise if module is unavailable

0.13.3 (2020-06-04)
Bug fixes
	Fix duplicate debounced events from being triggered on blur with timed debounce
	Fix client error when live_redirected route results in a redirect to a non-live route on the server
	Fix DOM siblings being removed when a rootless component is updated
	Fix debounced input failing to send last change when blurred via Tab, Meta, or other non-printable keys

Enhancements
	Add dom option to LiveSocket with onBeforeElUpdated callback for external client library support of broad DOM operations

0.13.2 (2020-05-27)
Bug fixes
	Fix a bug where swapping a root template with components would cause the LiveView to crash

0.13.1 (2020-05-26)
Bug fixes
	Fix forced page refresh when push_redirect from a live_redirect

Enhancements
	Optimize component diffs to avoid sending empty diffs
	Optimize components to share static values
	[LiveViewTest] Automatically synchronize before render events

0.13.0 (2020-05-21)
Backwards incompatible changes
	No longer send event metadata by default. Metadata is now opt-in and user defined at the LiveSocket level.
To maintain backwards compatibility with pre-0.13 behaviour, you can provide the following metadata option:

 let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 click: (e, el) => {
 return {
 altKey: e.altKey,
 shiftKey: e.shiftKey,
 ctrlKey: e.ctrlKey,
 metaKey: e.metaKey,
 x: e.x || e.clientX,
 y: e.y || e.clientY,
 pageX: e.pageX,
 pageY: e.pageY,
 screenX: e.screenX,
 screenY: e.screenY,
 offsetX: e.offsetX,
 offsetY: e.offsetY,
 detail: e.detail || 1,
 }
 },
 keydown: (e, el) => {
 return {
 altGraphKey: e.altGraphKey,
 altKey: e.altKey,
 code: e.code,
 ctrlKey: e.ctrlKey,
 key: e.key,
 keyIdentifier: e.keyIdentifier,
 keyLocation: e.keyLocation,
 location: e.location,
 metaKey: e.metaKey,
 repeat: e.repeat,
 shiftKey: e.shiftKey
 }
 }
 }
 })
Bug fixes
	Fix error caused by Chrome sending a keydown event on native UI autocomplete without a key
	Fix server error when a live navigation request issues a redirect
	Fix double window bindings when explicit calls to LiveSocket connect/disconnect/connect

Enhancements
	Add Phoenix.LiveView.get_connect_info/1
	Add Phoenix.LiveViewTest.put_connect_info/2 and Phoenix.LiveViewTest.put_connect_params/2
	Add support for tracking static asset changes on the page across cold server deploys
	Add support for passing a @myself target to a hook's pushEventTo target
	Add configurable metadata for events with new metadata LiveSocket option
	Add "_mounts" key in connect params which specifies the number of times a LiveView has mounted

0.12.1 (2020-04-19)
Bug fixes
	Fix component innerHTML being discarded when a sibling DOM element appears above it, in cases where the component lacks a DOM ID
	Fix Firefox reconnecting briefly during hard redirects
	Fix phx-disable-with and other pending attributes failing to be restored when an empty patch is returned by server
	Ensure LiveView module is loaded before mount to prevent first application request logging errors if the very first request is to a connected LiveView

0.12.0 (2020-04-16)
This version of LiveView comes with an overhaul of the testing module, more closely integrating your LiveView template with your LiveView events. For example, in previous versions, you could write this test:
 render_click(live_view, "increment_by", %{by: 1})
However, there is no guarantee that there is any element on the page with a phx-click="increment" attribute and phx-value-by set to 1. With LiveView 0.12.0, you can now write:
 live_view
 |> element("#term .buttons a", "Increment")
 |> render_click()
The new implementation will check there is a button at #term .buttons a, with "Increment" as text, validate that it has a phx-click attribute and automatically submit to it with all relevant phx-value entries. This brings us closer to integration/acceptance test frameworks without any of the overhead and complexities of running a headless browser.
Enhancements
	Add assert_patch/3 and assert_patched/2 for asserting on patches
	Add follow_redirect/3 to automatically follow redirects from render_* events
	Add phx-trigger-action form annotation to trigger an HTTP form submit on next DOM patch

Bug fixes
	Fix phx-target @myself targeting a sibling LiveView component with the same component ID
	Fix phx:page-loading-stop firing before the DOM patch has been performed
	Fix phx-update="prepend" failing to properly patch the DOM when the same ID is updated back to back
	Fix redirects on mount failing to copy flash

Backwards incompatible changes
	phx-error-for has been removed in favor of phx-feedback-for. phx-feedback-for will set a phx-no-feedback class whenever feedback has to be hidden

	Phoenix.LiveViewTest.children/1 has been renamed to Phoenix.LiveViewTest.live_children/1

	Phoenix.LiveViewTest.find_child/2 has been renamed to Phoenix.LiveViewTest.find_live_child/2

	Phoenix.LiveViewTest.assert_redirect/3 no longer matches on the flash, instead it returns the flash

	Phoenix.LiveViewTest.assert_redirect/3 no longer matches on the patch redirects, use assert_patch/3 instead

	Phoenix.LiveViewTest.assert_remove/3 has been removed. If the LiveView crashes, it will cause the test to crash too

	Passing a path with DOM IDs to render_* test functions is deprecated. Furthermore, they now require a phx-target="<%= @id %>" on the given DOM ID:
<div id="component-id" phx-target="component-id">
 ...
</div>
html = render_submit([view, "#component-id"], event, value)
In any case, this API is deprecated and you should migrate to the new element based API.

0.11.1 (2020-04-08)
Bug fixes
	Fix readonly states failing to be undone after an empty diff
	Fix dynamically added child failing to be joined by the client
	Fix teardown bug causing stale client sessions to attempt a rejoin on reconnect
	Fix orphaned prepend/append content across joins
	Track unless in LiveEEx engine

Backwards incompatible changes
	render_event/render_click and friends now expect a DOM ID selector to be given when working with components. For example, instead of render_click([live, "user-13"]), you should write render_click([live, "#user-13"]), mirroring the phx-target API.
	Accessing the socket assigns directly @socket.assigns[...] in a template will now raise the exception Phoenix.LiveView.Socket.AssignsNotInSocket. The socket assigns are available directly inside the template as LiveEEx assigns, such as @foo and @bar. Any assign access should be done using the assigns in the template where proper change tracking takes place.

Enhancements
	Trigger debounced events immediately on input blur
	Support defaults option on LiveSocket constructor to configure default phx-debounce and phx-throttle values, allowing <input ... phx-debounce>
	Add detail key to click event metadata for detecting double/triple clicks

0.11.0 (2020-04-06)
Backwards incompatible changes
	Remove socket.assigns during render to avoid change tracking bugs. If you were previously relying on passing @socket to functions then referencing socket assigns, pass the explicit assign instead to your functions from the template.

	Removed assets/css/live_view.css. If you want to show a progress bar then in app.css, replace
- @import "../../../../deps/phoenix_live_view/assets/css/live_view.css";
+ @import "../node_modules/nprogress/nprogress.css";
and add nprogress to assets/package.json. Full details in the Progress animation guide

Bug fixes
	Fix client issue with greater than two levels of LiveView nesting
	Fix bug causing entire LiveView to be re-rendering with only a component changed
	Fix issue where rejoins would not trigger phx:page-loading-stop

Enhancements
	Support deep change tracking so @foo.bar only executes and diffs when bar changes
	Add @myself assign, to allow components to target themselves instead of relying on a DOM ID, for example: phx-target="<%= @myself %>"
	Optimize various client rendering scenarios for faster DOM patching
of components and append/prepended content
	Add enableProfiling() and disableProfiling() to LiveSocket for client performance profiling to aid the development process
	Allow LiveViews to be rendered inside LiveComponents
	Add support for clearing flash inside components

0.10.0 (2020-03-18)
Backwards incompatible changes
	Rename socket assign @live_view_module to @live_module
	Rename socket assign @live_view_action to @live_action
	LiveView no longer uses the default app layout and put_live_layout is no longer supported. Instead, use put_root_layout. Note, however, that the layout given to put_root_layout must use @inner_content instead of <%= render(@view_module, @view_template, assigns) %> and that the root layout will also be used by regular views. Check the Live Layouts section of the docs.

Bug fixes
	Fix loading states causing nested LiveViews to be removed during live navigation
	Only trigger phx-update="ignore" hook if data attributes have changed
	Fix LiveEEx fingerprint bug causing no diff to be sent in certain cases

Enhancements
	Support collocated templates where an .html.leex template of the same basename of the LiveView will be automatically used for render/1
	Add live_title_tag/2 helper for automatic prefix/suffix on @page_title updates

0.9.0 (2020-03-08)
Bug fixes
	Do not set ignored inputs and buttons as readonly
	Only decode paths in URIs
	Only destroy main descendents when replacing main
	Fix sibling component patches when siblings at same root DOM tree
	Do not pick the layout from :use on child LiveViews
	Respect when the layout is set to false in the router and on mount
	Fix sibling component patch when component siblings lack a container
	Make flash optional (i.e. LiveView will still work if you don't fetch_flash before)

Enhancements
	Raise if :flash is given as an assign
	Support user-defined metadata in router
	Allow the router to be accessed as socket.router
	Allow MFArgs as the :session option in the live router macro
	Trigger page loading event when main LV errors
	Automatically clear the flash on live navigation examples - only the newly assigned flash is persisted

0.8.1 (2020-02-27)
Enhancements
	Support phx-disable-with on live redirect and live patch links

Bug Fixes
	Fix focus issue on date and time inputs
	Fix LiveViews failing to mount when page restored from back/forward cache following a redirect on the server
	Fix IE coercing undefined to string when issuing pushState
	Fix IE error when focused element is null
	Fix client error when using components and live navigation where a dynamic template is rendered
	Fix latent component diff causing error when component removed from DOM before patch arrives
	Fix race condition where a component event received on the server for a component already removed by the server raised a match error

0.8.0 (2020-02-22)
Backwards incompatible changes
	Remove Phoenix.LiveView.Flash in favor of :fetch_live_flash imported by Phoenix.LiveView.Router
	Live layout must now access the child contents with @inner_content instead of invoking the LiveView directly
	Returning :stop tuples from LiveView mount or handle_[params|call|cast|info|event] is no longer supported. LiveViews are stopped when issuing a redirect or push_redirect

Enhancements
	Add put_live_layout plug to put the root layout used for live routes
	Allow redirect and push_redirect from mount
	Use acknowledgement tracking to avoid patching inputs until the server has processed the form event
	Add css loading states to all phx bound elements with event specific css classes
	Dispatch phx:page-loading-start and phx:page-loading-stop on window for live navigation, initial page loads, and form submits, for user controlled page loading integration
	Allow any phx bound element to specify phx-page-loading to dispatch loading events above when the event is pushed
	Add client side latency simulator with new enableLatencySim(milliseconds) and disableLatencySim()
	Add enableDebug() and disableDebug() to LiveSocket for ondemand browser debugging from the web console
	Do not connect LiveSocket WebSocket or bind client events unless a LiveView is found on the page
	Add transport_pid/1 to return the websocket transport pid when the socket is connected

Bug Fixes
	Fix issue where a failed mount from a live_redirect would reload the current URL instead of the attempted new URL

0.7.1 (2020-02-13)
Bug Fixes
	Fix checkbox bug failing to send phx-change event to the server in certain cases
	Fix checkbox bug failing to maintain checked state when a checkbox is programmatically updated by the server
	Fix select bug in Firefox causing the highlighted index to jump when a patch is applied during hover state

0.7.0 (2020-02-12)
Backwards incompatible changes
	live_redirect was removed in favor of push_patch (for updating the URL and params of the current LiveView) and push_redirect (for updating the URL to another LiveView)
	live_link was removed in favor of live_patch (for updating the URL and params of the current LiveView) and live_redirect (for updating the URL to another LiveView)
	Phoenix.LiveViewTest.assert_redirect no longer accepts an anonymous function in favor of executing the code
prior to asserting the redirects, just like assert_receive.

Enhancements
	Support @live_view_action in LiveViews to simplify tracking of URL state
	Recovery form input data automatically on disconnects or crash recovery
	Add phx-auto-recover form binding for specialized recovery
	Scroll to top of page while respecting anchor hash targets on live_patch and live_redirect
	Add phx-capture-click to use event capturing to bind a click event as it propagates inwards from the target
	Revamp flash support so it works between static views, live views, and components
	Add phx-key binding to scope phx-window-keydown and phx-window-keyup events

Bug Fixes
	Send phx-value-* on key events
	Trigger updated hook callbacks on phx-update="ignore" container when the container's attributes have changed
	Fix nested phx-update="append" raising ArgumentError in LiveViewTest
	Fix updates not being applied in rare cases where an leex template is wrapped in an if expression

0.6.0 (2020-01-22)
Deprecations
	LiveView mount/2 has been deprecated in favor of mount/3. The params are now passed as the first argument to mount/3, followed by the session and socket.

Backwards incompatible changes
	The socket session now accepts only string keys

Enhancements
	Allow window beforeunload to be cancelled without losing websocket connection

Bug Fixes
	Fix handle_params not decoding URL path parameters properly
	Fix LiveViewTest error when routing at root path
	Fix URI encoded params failing to be decoded in handle_params
	Fix component target failing to locate correct component when the target is on an input tag

0.5.2 (2020-01-17)
Bug Fixes
	Fix optimization bug causing some DOM nodes to be removed on updates

0.5.1 (2020-01-15)
Bug Fixes
	Fix phx-change bug causing phx-target to not be used

0.5.0 (2020-01-15)
LiveView now makes the connection session automatically available in LiveViews. However, to do so, you need to configure your endpoint accordingly, otherwise LiveView will fail to connect.
The steps are:
	Find plug Plug.Session, ... in your endpoint.ex and move the options ... to a module attribute:
 @session_options [
 ...
]

	Change the plug Plug.Session to use said attribute:
 plug Plug.Session, @session_options

	Also pass the @session_options to your LiveView socket:
 socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [session: @session_options]]

	You should define the CSRF meta tag inside <head> in your layout, before app.js is included:
 <meta name="csrf-token" content={Plug.CSRFProtection.get_csrf_token()} />
 <script type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>

	Then in your app.js:
 let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content");
 let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}});

Also note that the session from now on will have string keys. LiveView will warn if atom keys are used.
Enhancements
	Respect new tab behavior in live_link
	Add beforeUpdate and beforeDestroy JS hooks
	Make all assigns defined on the socket mount available on the layout on first render
	Provide support for live layouts with new :layout option
	Detect duplicate IDs on the front-end when DEBUG mode is enabled
	Automatically forward the session to LiveView
	Support "live_socket_id" session key for identifying (and disconnecting) LiveView sockets
	Add support for hibernate_after on LiveView processes
	Support redirecting to full URLs on live_redirect and redirect
	Add offsetX and offsetY to click event metadata
	Allow live_link and live_redirect to exist anywhere in the page and it will always target the main LiveView (the one defined at the router)

Backwards incompatible changes
	phx-target="window" has been removed in favor of phx-window-keydown, phx-window-focus, etc, and the phx-target binding has been repurposed for targeting LiveView and LiveComponent events from the client
	Phoenix.LiveView no longer defined live_render and live_link. These functions have been moved to Phoenix.LiveView.Helpers which can now be fully imported in your views. In other words, replace import Phoenix.LiveView, only: [live_render: ..., live_link: ...] by import Phoenix.LiveView.Helpers

0.4.1 (2019-11-07)
Bug Fixes
	Fix bug causing blurred inputs

0.4.0 (2019-11-07)
Enhancements
	Add Phoenix.LiveComponent to compartmentalize state, markup, and events in LiveView
	Handle outdated clients by refreshing the page with jitter when a valid, but outdated session is detected
	Only dispatch live link clicks to router LiveView
	Refresh the page for graceful error recovery on failed mount when the socket is in a connected state

Bug Fixes
	Fix phx-hook destroyed callback failing to be called in certain cases
	Fix back/forward bug causing LiveView to fail to remount

0.3.1 (2019-09-23)
Backwards incompatible changes
	live_isolated in tests no longer requires a router and a pipeline (it now expects only 3 arguments)
	Raise if handle_params is used on a non-router LiveView

Bug Fixes
	[LiveViewTest] Fix function clause errors caused by HTML comments

0.3.0 (2019-09-19)
Enhancements
	Add phx-debounce and phx-throttle bindings to rate limit events

Backwards incompatible changes
	IE11 support now requires two additional polyfills, mdn-polyfills/CustomEvent and mdn-polyfills/String.prototype.startsWith

Bug Fixes
	Fix IE11 support caused by unsupported getAttributeNames lookup
	Fix Floki dependency compilation warnings

0.2.1 (2019-09-17)
Bug Fixes
	[LiveView.Router] Fix module concat failing to build correct layout module when using custom namespace
	[LiveViewTest] Fix phx-update append/prepend containers not building proper DOM content
	[LiveViewTest] Fix phx-update append/prepend containers not updating existing child containers with matching IDs

0.2.0 (2019-09-12)
Enhancements
	[LiveView] Add new :container option to use Phoenix.LiveView
	[LiveViewTest] Add live_isolated test helper for testing LiveViews which are not routable

Backwards incompatible changes
	Replace configure_temporary_assigns/2 with 3-tuple mount return, supporting a :temporary_assigns key
	Do not allow redirect/live_redirect on mount nor in child live views
	All phx-update containers now require a unique ID
	LiveSocket JavaScript constructor now requires explicit dependency injection of Phoenix Socket constructor. For example:

import {Socket} from "phoenix"
import LiveSocket from "phoenix_live_view"

let liveSocket = new LiveSocket("/live", Socket, {...})
Bug Fixes
	Fix phx-update=append/prepend failing to join new nested live views or wire up new phx-hooks
	Fix number input handling causing some browsers to reset form fields on invalid inputs
	Fix multi-select decoding causing server error
	Fix multi-select change tracking failing to submit an event when a value is deselected
	Fix live redirect loop triggered under certain scenarios
	Fix params failing to update on re-mounts after live_redirect
	Fix blur event metadata being sent with type of "focus"

0.1.2 (2019-08-28)
Backwards incompatible changes
	phx-value has no effect, use phx-value-* instead
	The :path_params key in session has no effect (use handle_params in LiveView instead)

0.1.1 (2019-08-27)
Enhancements
	Use optimized insertAdjacentHTML for faster append/prepend and proper css animation handling
	Allow for replacing previously appended/prepended elements by replacing duplicate IDs during append/prepend instead of adding new DOM nodes

Bug Fixes
	Fix duplicate append/prepend updates when parent content is updated
	Fix JS hooks not being applied for appending and prepended content

0.1.0 (2019-08-25)
Enhancements
	The LiveView handle_in/3 callback now receives a map of metadata about the client event
	For phx-change events, handle_in/3 now receives a "_target" param representing the keyspace of the form input name which triggered the change
	Multiple values may be provided for any phx binding by using the phx-value- prefix, such as phx-value-myval1, phx-value-myval2, etc
	Add control over the DOM patching via phx-update, which can be set to "replace", "append", "prepend" or "ignore"

Backwards incompatible changes
	phx-ignore was renamed to phx-update="ignore"

 Installation - Phoenix LiveView v0.19.3

Installation

New projects
Phoenix v1.5+ comes with built-in support for LiveView apps. Just create
your application with mix phx.new my_app --live. The --live flag has
become the default on Phoenix v1.6.
Once you've created a LiveView project, refer to LiveView documentation
for further information on how to use it.
Existing projects
If you are using a Phoenix version earlier than v1.5 or your app already exists, continue
with the following steps.
The instructions below will serve if you are installing the latest stable version
from Hex. To start using LiveView, add one of the following dependencies to your mix.exs
and run mix deps.get.
If installing from Hex, use the latest version from there:
def deps do
 [
 {:phoenix_live_view, "~> 0.18"},
 {:floki, ">= 0.30.0", only: :test}
]
end
If you want the latest features, install from GitHub:
def deps do
 [
 {:phoenix_live_view, github: "phoenixframework/phoenix_live_view"},
 {:floki, ">= 0.30.0", only: :test}
]
Once installed, update your endpoint's configuration to include a signing salt.
You can generate a signing salt by running mix phx.gen.secret 32:
config/config.exs

config :my_app, MyAppWeb.Endpoint,
 live_view: [signing_salt: "SECRET_SALT"]
Next, add the following imports to your web file in lib/my_app_web.ex:
lib/my_app_web.ex

def view do
 quote do
 # ...
 import Phoenix.Component
 end
end

def router do
 quote do
 # ...
 import Phoenix.LiveView.Router
 end
end
In that same file, update your live_view layout configuration:
lib/my_app_web.ex

def live_view do
 use Phoenix.LiveView,
- layout: {MyAppWeb.LayoutView, "live.html"}
+ layout: {MyAppWeb.LayoutView, :live}

 unquote(view_helpers())
end
Then add the Phoenix.LiveView.Router.fetch_live_flash/2 plug to your browser pipeline, in place of :fetch_flash:
lib/my_app_web/router.ex

pipeline :browser do
 # ...
 plug :fetch_session
- plug :fetch_flash
+ plug :fetch_live_flash
end
Next, expose a new socket for LiveView updates in your app's endpoint module.
lib/my_app_web/endpoint.ex

defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint

 # ...

 socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [session: @session_options]]

 # ...
end
Where @session_options are the options given to plug Plug.Session by using a module attribute. If you don't have a @session_options in your endpoint yet, here is how to create one:
	Find plug Plug.Session in your endpoint.ex

 plug Plug.Session
 store: :cookie,
 key: "_my_app_key",
 signing_salt: "somesigningsalt"
	Move the options to a module attribute at the top of your file:

 @session_options [
 store: :cookie,
 key: "_my_app_key",
 signing_salt: "somesigningsalt"
]
	Change the plug Plug.Session to use that attribute:

 plug Plug.Session, @session_options
Finally, ensure you have placed a CSRF meta tag inside the <head> tag in your layout (lib/my_app_web/templates/layout/app.html.*) before app.js is included, like so:
<meta name="csrf-token" content={Plug.CSRFProtection.get_csrf_token()} />
<script defer type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>
and enable connecting to a LiveView socket in your app.js file.
// assets/js/app.js
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})

// Connect if there are any LiveViews on the page
liveSocket.connect()

// Expose liveSocket on window for web console debug logs and latency simulation:
// >> liveSocket.enableDebug()
// >> liveSocket.enableLatencySim(1000)
// The latency simulator is enabled for the duration of the browser session.
// Call disableLatencySim() to disable:
// >> liveSocket.disableLatencySim()
window.liveSocket = liveSocket
The JavaScript above expects phoenix_live_view to be available as a JavaScript dependency. Let's do that.
npm dependencies
If using npm, you need to add LiveView to your assets/package.json. For a regular project, do:
{
 "dependencies": {
 "phoenix": "file:../deps/phoenix",
 "phoenix_html": "file:../deps/phoenix_html",
 "phoenix_live_view": "file:../deps/phoenix_live_view"
 }
}
However, if you're adding phoenix_live_view to an umbrella project, the dependency paths should be modified appropriately:
{
 "dependencies": {
 "phoenix": "file:../../../deps/phoenix",
 "phoenix_html": "file:../../../deps/phoenix_html",
 "phoenix_live_view": "file:../../../deps/phoenix_live_view"
 }
}
Now run the next commands from the root of your web app project:
npm install --prefix assets

If you had previously installed phoenix_live_view and want to get the
latest javascript, then force an install with:
npm install --force phoenix_live_view --prefix assets

Layouts
LiveView does not use the default app layout. Instead, you typically call put_root_layout in your router to specify a layout that is used by both "regular" views and live views. In your router, do:
lib/my_app_web/router.ex

pipeline :browser do
 # ...
 plug :put_root_layout, html: {MyAppWeb.LayoutView, :root}
 # ...
end
The layout given to put_root_layout is typically very barebones, with mostly <head> and <body> tags. For example:
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta name="csrf-token" content={Plug.CSRFProtection.get_csrf_token()} />
 <Phoenix.Component.live_title><%= assigns[:page_title] || "MyApp" %></Phoenix.Component.live_title>
 <link rel="stylesheet" href="<%= Routes.static_path(@conn, "/css/app.css") %>"/>
 <script defer type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>
 </head>
 <body>
 <%= @inner_content %>
 </body>
</html>
Once you have specified a root layout, app.html.heex will be rendered within your root layout for all non-LiveViews. You may also optionally define a live.html.heex layout to be used across all LiveViews, as we will describe in the next section.
Optionally, you can add a phx-track-static to all script and link elements in your layout that use src and href. This way you can detect when new assets have been deployed by calling static_changed?.
<link phx-track-static rel="stylesheet" href={Routes.static_path(@conn, "/css/app.css")} />
<script phx-track-static defer type="text/javascript" src={Routes.static_path(@conn, "/js/app.js")}></script>
Progress animation
If you want to show a progress bar as users perform live actions, we recommend using topbar.
You can either add a copy of topbar to assets/vendor/topbar.js or add it as a npm dependency by calling:
$ npm install --prefix assets --save topbar

Then customize LiveView to use it in your assets/js/app.js, right before the liveSocket.connect() call:
// Show progress bar on live navigation and form submits
import topbar from "topbar"
topbar.config({barColors: {0: "#29d"}, shadowColor: "rgba(0, 0, 0, .3)"})
window.addEventListener("phx:page-loading-start", info => topbar.show())
window.addEventListener("phx:page-loading-stop", info => topbar.hide())
Alternatively, you can also delay showing the topbar and wait if the results do not appear within 200ms:
// Show progress bar on live navigation and form submits
import topbar from "topbar"
topbar.config({barColors: {0: "#29d"}, shadowColor: "rgba(0, 0, 0, .3)"})

window.addEventListener("phx:page-loading-start", () => {
 topbar.show(200)
})

window.addEventListener("phx:page-loading-stop", () => {
 topbar.hide()
})
Location for LiveView modules
By convention your LiveView modules and heex templates should be placed in lib/my_app_web/live/ directory.

 Welcome - Phoenix LiveView v0.19.3

Welcome

Welcome to Phoenix LiveView documentation. Phoenix LiveView enables
rich, real-time user experiences with server-rendered HTML. A general
overview of LiveView and its benefits is available in our README.
This page is a brief introduction into the main abstractions in LiveView
and our documentation.
Building blocks
There are three main building blocks in Phoenix LiveView: Phoenix.Component,
Phoenix.LiveView, and Phoenix.LiveComponent.
Phoenix.Component
A Phoenix.Component is a function that receives assigns and returns a
rendered template. Let's see an example:
defmodule MyFirstComponent do
 use Phoenix.Component

 def greet(assigns) do
 ~H"""
 <p>Hello, <%= @name %>!</p>
 """
 end
end
greet is a function that receives one argument: the assigns map.
assigns is a key-value data structure with all attributes available
to the function component.
This function uses the ~H sigil to return a rendered template.
~H stands for HEEx (HTML + EEx). HEEx is a template language for
writing HTML mixed with Elixir interpolation. We can write Elixir
code inside HEEx using <%= ... %> tags and we use @name to access
the key name defined inside assigns.
Once you define a component, you can invoke it from other HEEx templates
like this:
~H"""
<MyFirstComponent.greet name="Mary" />
"""
Which will then return:
<p>Hello, Mary!</p>
If you are invoking the component in the same module it is defined,
you can skip the module prefix when invoking it:
~H"""
<.greet name="Mary" />
"""
Although components are part of LiveView, they are also used outside
of LiveView to build high-level composable abstrations within our web
applications.
You can learn more about components, HEEx templates, and their features
in the Phoenix.Component module documentation.
Phoenix.LiveView
LiveViews are processes that receives events, updates its state,
and render updates to a page as diffs.
The LiveView programming model is declarative: instead of saying
"once event X happens, change Y on the page", events in LiveView
are regular messages which may cause changes to its state. Once
the state changes, LiveView will re-render the relevant parts of
its HTML template and push it to the browser, which updates itself
in the most efficient manner.
The behaviour of a LiveView is outlined by a module which implements
a series of functions as callbacks. Let's see an example:
defmodule MyAppWeb.ThermostatLive do
 # In Phoenix v1.6+ apps, the line is typically: use MyAppWeb, :live_view
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 Current temperature: <%= @temperature %>
 <button phx-click="inc_temperature">+</button>
 """
 end

 def mount(_params, %{"current_user_id" => user_id}, socket) do
 temperature = Thermostat.get_user_reading(user_id)
 {:ok, assign(socket, :temperature, temperature)}
 end

 def handle_event("inc_temperature", _params, socket) do
 {:ok, update(socket, :temperature, &(&1 + 1))}
 end
end
The module above defines three functions (they are callbacks
required by LiveView). The first one is render/1, which works
precisely as a function component: it receives data as assigns
and returns a template. This is the template that will be rendered
on the page.
The data used on rendering comes from the mount callback. The
mount callback is invoked when the LiveView starts. In it, you
can access the request parameters, read information stored in the
session (typically information which identifies who is the current
user), and a socket. The socket is where we keep all state, including
assigns. mount proceeds to read the thermostat temperature for the
user and store its value in the assigns. After mount, LiveView will
render the page with the values from assigns.
If you look at the HTML rendered, you will notice there is a button
with a phx-click attribute. When the button is clicked, a
"inc_temperature" event is sent to the server, which is matched and
handled by the handle_event callback. The callback updates the state
which causes the page to be updated. LiveView then computes diffs and
sends them to client.
In order to render your LiveView to users, you will first need to plug
it in your router. We explain the required steps and detail other LiveView
features and callbacks in the Phoenix.LiveView module documentation.
Phoenix.LiveComponent
Phoenix.LiveComponent are modules that play a role between
Phoenix.LiveView and Phoenix.Component.
Components allow us to encapsulate markup logic. LiveView are
processes that encapsulate logic, state, and events. Sometimes,
however, we want encapsulate some logic, state, and events
(not only markup) between LiveViews, without creating a whole
LiveView itself. That's exactly the goal of LiveComponents.
To learn more, check out Phoenix.LiveComponent documentation.
Guides
This documentation is split into two categories. We have the API
reference for all LiveView modules, that's where you will learn
more about Phoenix.Component, Phoenix.LiveView, and so on.
We also provide a series of guides around specific topics. The
guides are divided in two categories: if they are server-centric
or client-centric. You can explore them in the sidebar.
Happy learning!

 Assigns and HEEx templates - Phoenix LiveView v0.19.3

Assigns and HEEx templates

All of the data in a LiveView is stored in the socket, which is a server
side struct called Phoenix.LiveView.Socket. Your own data is stored
under the assigns key of said struct. The server data is never shared
with the client beyond what your template renders.
Phoenix template language is called HEEx (HTML+EEx). EEx is Embedded
Elixir, an Elixir string template engine. Those templates
are either files with the .heex extension or they are created
directly in source files via the ~H sigil. You can learn more about
the HEEx syntax by checking the docs for the ~H sigil.
The Phoenix.Component.assign/2 and Phoenix.Component.assign/3
functions help store those values. Those values can be accessed
in the LiveView as socket.assigns.name but they are accessed
inside HEEx templates as @name.
In this section, we are going to cover how LiveView minimizes
the payload over the wire by understanding the interplay between
assigns and templates.
Change tracking
When you first render a .heex template, it will send all of the
static and dynamic parts of the template to the client. Imagine the
following template:
<h1><%= expand_title(@title) %></h1>
It has two static parts, <h1> and </h1> and one dynamic part
made of expand_title(@title). Further rendering of this template
won't resend the static parts and it will only resend the dynamic
part if it changes.
The tracking of changes is done via assigns. If the @title assign
changes, then LiveView will execute expand_title(@title) and send
the new content. If @title is the same, nothing is executed and
nothing is sent.
Change tracking also works when accessing map/struct fields.
Take this template:
<div id={"user_#{@user.id}"}>
 <%= @user.name %>
</div>
If the @user.name changes but @user.id doesn't, then LiveView
will re-render only @user.name and it will not execute or resend @user.id
at all.
The change tracking also works when rendering other templates as
long as they are also .heex templates:
<%= render "child_template.html", assigns %>
Or when using function components:
<.show_name name={@user.name} />
The assign tracking feature also implies that you MUST avoid performing
direct operations in the template. For example, if you perform a database
query in your template:
<%= for user <- Repo.all(User) do %>
 <%= user.name %>
<% end %>
Then Phoenix will never re-render the section above, even if the number of
users in the database changes. Instead, you need to store the users as
assigns in your LiveView before it renders the template:
assign(socket, :users, Repo.all(User))
Generally speaking, data loading should never happen inside the template,
regardless if you are using LiveView or not. The difference is that LiveView
enforces this best practice.
Pitfalls
There are two common pitfalls to keep in mind when using the ~H sigil
or .heex templates inside LiveViews.
When it comes to do/end blocks, change tracking is supported only on blocks
given to Elixir's basic constructs, such as if, case, for, and similar.
If the do/end block is given to a library function or user function, such as
content_tag, change tracking won't work. For example, imagine the following
template that renders a div:
<%= content_tag :div, id: "user_#{@id}" do %>
 <%= @name %>
 <%= @description %>
<% end %>
LiveView knows nothing about content_tag, which means the whole div will
be sent whenever any of the assigns change. Luckily, HEEx templates provide
a nice syntax for building tags, so there is rarely a need to use content_tag
inside .heex templates:
<div id={"user_#{@id}"}>
 <%= @name %>
 <%= @description %>
</div>
The next pitfall is related to variables. Due to the scope of variables,
LiveView has to disable change tracking whenever variables are used in the
template, with the exception of variables introduced by Elixir basic case,
for, and other block constructs. Therefore, you must avoid code like
this in your LiveView templates:
<% some_var = @x + @y %>
<%= some_var %>
Instead, use a function:
<%= sum(@x, @y) %>
Similarly, do not define variables at the top of your render function:
def render(assigns) do
 sum = assigns.x + assigns.y

 ~H"""
 <%= sum %>
 """
end
Instead explicitly precompute the assign in your LiveView, outside of render:
assign(socket, sum: socket.assigns.x + socket.assigns.y)
Generally speaking, avoid accessing variables inside LiveViews, as code that
access variables is always executed on every render. This also applies to the
assigns variable. The exception are variables introduced by Elixir's block
constructs. For example, accessing the post variable defined by the comprehension
below works as expected:
<%= for post <- @posts do %>
 ...
<% end %>
To sum up:
	Avoid passing block expressions to library and custom functions,
instead prefer to use the conveniences in HEEx templates

	Avoid defining local variables, except within Elixir's constructs

 Deployments - Phoenix LiveView v0.19.3

Deployments

One of the questions that arise from LiveView stateful model is what considerations are necessary when deploying a new version of LiveView.
First off, whenever LiveView disconnects, it will automatically attempt to reconnect to the server using exponential back-off. This means it will try immediately, then wait 2s and try again, then 5s and so on. If you are deploying, this typically means the next reconnection will immediately succeed and your load balancer will automatically redirect to the new servers.
However, your LiveView may still have state that will be lost in this transition. How to deal with it? The good news is that there are a series of practices you can follow that will not only help with deployments but it will improve your application in general.
	Keep state in the query parameters when appropriate. For example, if your application has tabs and the user clicked a tab, instead of using phx-click and Phoenix.LiveView.handle_event/3 to manage it, you should implement it using <.link patch={...}> passing the tab name as parameter. You will then receive the new tab name Phoenix.LiveView.handle_params/3 which will set the relevant assign to choose which tab to display. You can even define specific URLs for each tab in your application router. By doing this, you will reduce the amount of server state, make tab navigation sharable via links, improving search engine indexing, and more.

	Consider storing other relevant state in the database. For example, if you are building a chat app and you want to store which messages have been read, you can store so in the database. Once the page is loaded, you retrieve the index of the last read message. This makes the application more robust, allow data to be synchronized across devices, etc.

	If your application uses forms (which is most likely true), keep in mind that Phoenix perform automatic form recovery: in case of disconnections, Phoenix will collect the form data and resubmit it on reconnection. This mechanism works out of the box for most forms but you may want to customize it or test it for your most complex forms. See the relevant section in the "Form bindings" document to learn more.

The idea is that: if you follow the practices above, most of your state is already handled within your app and therefore deployments should not bring additional concerns. Not only that, it will bring overall benefits to your app such as indexing, link sharing, device sharing, and so on.
If you really have complex state that cannot be immediately handled, then you may need to resort to special strategies. This may be persisting "old" state to Redis/S3/Database and loading the new state on the new connections. Or you may take special care when migrating connections (for example, if you are building a game, you may want to wait for on-going sessions to finish before turning down the old server while routing new sessions to the new ones). Such cases will depend on your requirements (and they would likely exist regardless of which application stack you are using).

 Error and exception handling - Phoenix LiveView v0.19.3

Error and exception handling

As with any other Elixir code, exceptions may happen during the LiveView
life-cycle. In this section we will describe how LiveView reacts to errors
at different stages.
Expected scenarios
In this section, we will talk about error cases that you expect to happen
within your application. For example, a user filling in a form with invalid
data is expected. In a LiveView, we typically handle those cases by storing
a change in the LiveView state, which causes the LiveView to be re-rendered
with the error message.
We may also use flash messages for this. For example, imagine you have a
page to manage all "Team members" in an organization. However, if there is
only one member left in the organization, they should not be allowed to
leave. You may want to handle this by using flash messages:
if MyApp.Org.leave(socket.assigns.current_org, member) do
 {:noreply, socket}
else
 {:noreply, put_flash(socket, :error, "last member cannot leave organization")}
end
However, one may argue that, if the last member of an organization cannot
leave it, it may be better to not even show the "Leave" button in the UI
when the organization has only one member.
Given the button does not appear in the UI, triggering the "leave" when
the organization has now only one member is an unexpected scenario. This
means we can probably rewrite the code above to:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
If leave returns false by any chance, it will just raise. Or you can
even provide a leave! function that raises a specific exception:
MyApp.Org.leave!(socket.assigns.current_org, member)
{:noreply, socket}
However, what will happen with a LiveView in case of exceptions?
Let's talk about unexpected scenarios.
Unexpected scenarios
Elixir developers tend to write assertive code. This means that, if we
expect leave to always return true, we can explicitly match on its
result, as we did above:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
If leave fails and returns false, an exception is raised. It is common
for Elixir developers to use exceptions for unexpected scenarios in their
Phoenix applications.
For example, if you are building an application where a user may belong to
one or more organizations, when accessing the organization page, you may want to
check that the user has access to it like this:
organizations_query = Ecto.assoc(socket.assigns.current_user, :organizations)
Repo.get!(organizations_query, params["org_id"])
The code above builds a query that returns all organizations that belongs to
the current user and then validates that the given "org_id" belongs to the
user. If there is no such "org_id" or if the user has no access to it, an
Ecto.NoResultsError exception is raised.
During a regular controller request, this exception will be converted to a
404 exception and rendered as a custom error page, as
detailed here.
To understand how a LiveView reacts to exceptions, we need to consider two
scenarios: exceptions on mount and during any event.
Exceptions on mount
Given the code on mount runs both on the initial disconnected render and the
connected render, an exception on mount will trigger the following events:
Exceptions during disconnected render:
	An exception on mount is caught and converted to an exception page
by Phoenix error views - pretty much like the way it works with controllers

Exceptions during connected render:
	An exception on mount will crash the LiveView process - which will be logged
	Once the client has noticed the crash during mount, it will fully reload the page
	Reloading the page will start a disconnected render, that will cause mount
to be invoked again and most likely raise the same exception. Except this time
it will be caught and converted to an exception page by Phoenix error views

In other words, LiveView will reload the page in case of errors, making it
fail as if LiveView was not involved in the rendering in the first place.
Exceptions on events (handle_info, handle_event, etc)
If the error happens during an event, the LiveView process will crash. The client
will notice the error and remount the LiveView - without reloading the page. This
is enough to update the page and show the user the latest information.
For example, let's say two users try to leave the organization at the same time.
In this case, both of them see the "Leave" button, but our leave function call
will succeed only for one of them:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
When the exception raises, the client will remount the LiveView. Once you remount,
your code will now notice that there is only one user in the organization and
therefore no longer show the "Leave" button. In other words, by remounting,
we often update the state of the page, allowing exceptions to be automatically
handled.
Note that the choice between conditionally checking on the result of the leave
function with an if, or simply asserting it returns true, is completely
up to you. If the likelihood of everyone leaving the organization at the same
time is low, then you may as well treat it as an unexpected scenario. Although
other developers will be more comfortable by explicitly handling those cases.
In both scenarios, LiveView has you covered.

 Live layouts - Phoenix LiveView v0.19.3

Live layouts

From Phoenix v1.7, your application is made of two layouts:
	the root layout - this is a layout used by both LiveView and
regular views. This layout typically contains the <html>
definition alongside the head and body tags. Any content defined
in the root layout will remain the same, even as you live navigate
across LiveViews. The root layout is typically declared on the
router with put_root_layout and defined as "root.html.heex"
in your layouts folder

	the app layout - this is the default application layout which
is rendered on both regular HTTP requests and LiveViews.
It defaults to "app.html.heex"

Overall, those layouts are found in components/layouts and are
embedded within MyAppWeb.Layouts.
All layouts must call <%= @inner_content %> to inject the
content rendered by the layout.
Root layout
The "root" layout is rendered only on the initial request and
therefore it has access to the @conn assign. The root layout
is typically defined in your router:
plug :put_root_layout, html: {MyAppWeb.LayoutView, :root}
The root layout can also be set via the :root_layout option
in your router via Phoenix.LiveView.Router.live_session/2.
Application layout
The "app.html.heex" layout is rendered with either @conn or
@socket. Both Controllers and LiveViews explicitly define
the default layouts they will use. See the def controller
and def live_view definitions in your MyAppWeb to learn how
it is included.
For LiveViews, the default layout can be overidden in two different
ways for flexibility:
	The :layout option in Phoenix.LiveView.Router.live_session/2,
when set, will override the :layout option given via
use Phoenix.LiveView

	The :layout option returned on mount, via {:ok, socket, layout: ...}
will override any previously set layout option

The LiveView itself will be rendered inside the layout wrapped by
the :container tag.
Updating document title
Because the root layout from the Plug pipeline is rendered outside of
LiveView, the contents cannot be dynamically changed. The one exception
is the <title> of the HTML document. Phoenix LiveView special cases
the @page_title assign to allow dynamically updating the title of the
page, which is useful when using live navigation, or annotating the browser
tab with a notification. For example, to update the user's notification
count in the browser's title bar, first set the page_title assign on
mount:
 def mount(_params, _session, socket) do
 socket = assign(socket, page_title: "Latest Posts")
 {:ok, socket}
 end
Then access @page_title in the root layout:
<title><%= @page_title %></title>
You can also use the Phoenix.Component.live_title/1 component to support
adding automatic prefix and suffix to the page title when rendered and
on subsequent updates:
<Phoenix.Component.live_title prefix="MyApp – ">
 <%= assigns[:page_title] || "Welcome" %>
</Phoenix.Component.live_title>
Although the root layout is not updated by LiveView, by simply assigning
to page_title, LiveView knows you want the title to be updated:
def handle_info({:new_messages, count}, socket) do
 {:noreply, assign(socket, page_title: "Latest Posts (#{count} new)")}
end
Note: If you find yourself needing to dynamically patch other parts of the
base layout, such as injecting new scripts or styles into the <head> during
live navigation, then a regular, non-live, page navigation should be used
instead. Assigning the @page_title updates the document.title directly,
and therefore cannot be used to update any other part of the base layout.

 Live navigation - Phoenix LiveView v0.19.3

Live navigation

LiveView provides functionality to allow page navigation using the
browser's pushState API.
With live navigation, the page is updated without a full page reload.
You can trigger live navigation in two ways:
	From the client - this is done by passing either patch={url} or navigate={url}
to the Phoenix.Component.link/1 component.

	From the server - this is done by Phoenix.LiveView.push_patch/2 or Phoenix.LiveView.push_navigate/2.

For example, instead of writing the following in a template:
<.link href={~p"/pages/#{@page + 1}"}>Next</.link>
You would write:
<.link patch={~p"/pages/#{@page + 1}"}>Next</.link>
Or in a LiveView:
{:noreply, push_patch(socket, to: ~p"/pages/#{@page + 1}")}
The "patch" operations must be used when you want to navigate to the
current LiveView, simply updating the URL and the current parameters,
without mounting a new LiveView. When patch is used, the
handle_params/3 callback is
invoked and the minimal set of changes are sent to the client.
See the next section for more information.
The "navigate" operations must be used when you want to dismount the
current LiveView and mount a new one. You can only "navigate" between
LiveViews in the same session. While redirecting, a phx-loading class
is added to the LiveView, which can be used to indicate to the user a
new page is being loaded.
If you attempt to patch to another LiveView or navigate across live sessions,
a full page reload is triggered. This means your application continues to work,
in case your application structure changes and that's not reflected in the navigation.
Here is a quick breakdown:
	<.link href={...}> and redirect/2
are HTTP-based, work everywhere, and perform full page reloads

	<.link navigate={...}> and push_navigate/2
work across LiveViews in the same session. They mount a new LiveView
while keeping the current layout

	<.link patch={...}> and push_patch/2
updates the current LiveView and sends only the minimal diff while also
maintaining the scroll position

handle_params/3
The handle_params/3 callback is invoked
after mount/3 and before the initial render.
It is also invoked every time <.link patch={...}>
or push_patch/2 are used.
It receives the request parameters as first argument, the url as second,
and the socket as third.
For example, imagine you have a UserTable LiveView to show all users in
the system and you define it in the router as:
live "/users", UserTable
Now to add live sorting, you could do:
<.link patch={path(~p"/users", sort_by: "name")}>Sort by name</.link>
When clicked, since we are navigating to the current LiveView,
handle_params/3 will be invoked.
Remember you should never trust the received params, so you must use the callback to
validate the user input and change the state accordingly:
def handle_params(params, _uri, socket) do
 socket =
 case params["sort_by"] do
 sort_by when sort_by in ~w(name company) -> assign(socket, sort_by: sort_by)
 _ -> socket
 end

 {:noreply, load_users(socket)}
end
Note we returned {:noreply, socket}, where :noreply means no
additional information is sent to the client. As with other handle_*
callbacks, changes to the state inside
handle_params/3 will trigger
a new server render.
Note the parameters given to handle_params/3
are the same as the ones given to mount/3.
So how do you decide which callback to use to load data?
Generally speaking, data should always be loaded on mount/3,
since mount/3 is invoked once per LiveView life-cycle.
Only the params you expect to be changed via
<.link patch={...}> or
push_patch/2 must be loaded on
handle_params/3.
For example, imagine you have a blog. The URL for a single post is:
"/blog/posts/:post_id". In the post page, you have comments and they are paginated.
You use <.link patch={...}> to update the shown
comments every time the user paginates, updating the URL to "/blog/posts/:post_id?page=X".
In this example, you will access "post_id" on mount/3 and
the page of comments on handle_params/3.
Replace page address
LiveView also allows the current browser URL to be replaced. This is useful when you
want certain events to change the URL but without polluting the browser's history.
This can be done by passing the <.link replace> option to any of the navigation helpers.
Multiple LiveViews in the same page
LiveView allows you to have multiple LiveViews in the same page by calling
Phoenix.Component.live_render/3 in your templates. However, only
the LiveViews defined directly in your router can use the "Live Navigation"
functionality described here. This is important because LiveViews work
closely with your router, guaranteeing you can only navigate to known
routes.

 Security considerations - Phoenix LiveView v0.19.3

Security considerations

LiveView begins its life-cycle as a regular HTTP request. Then a stateful
connection is established. Both the HTTP request and the stateful connection
receive the client data via parameters and session.
This means that any session validation must happen both in the HTTP request
(plug pipeline) and the stateful connection (LiveView mount).
Authentication vs authorization
When speaking about security, there are two terms commonly used:
authentication and authorization. Authentication is about identifying
a user. Authorization is about telling if a user has access to a certain
resource or feature in the system.
In a regular web application, once a user is authenticated, for example by
entering their email and password, or by using a third-party service such as
Google, Twitter, or Facebook, a token identifying the user is stored in the
session, which is a cookie (a key-value pair) stored in the user's browser.
Every time there is a request, we read the value from the session, and, if
valid, we fetch the user stored in the session from the database. The session
is automatically validated by Phoenix and tools like mix phx.gen.auth can
generate the building blocks of an authentication system for you.
Once the user is authenticated, they may perform many actions on the page,
and some of those actions require specific permissions. This is called
authorization and the specific rules often change per application.
In a regular web application, we perform authentication and authorization
checks on every request. In LiveView, we should also run those exact same
checks, always. Once the user is authenticated, we typically validate the
sessions on the mount callback. Authorization rules generally happen on
mount (for instance, is the user allowed to see this page?) and also on
handle_event (is the user allowed to delete this item?).
Mounting considerations
The mount/3 callback is invoked both on
the initial HTTP mount and when LiveView is connected. Therefore, any
authentication performed during mount will cover all scenarios.
If you perform user authentication and confirmation exclusively on HTTP
requests via Plugs, such as this:
plug :ensure_user_authenticated
plug :ensure_user_confirmed
Then the mount/3 callback of your LiveView
should execute those same verifications:
def mount(_params, %{"user_id" => user_id} = _session, socket) do
 socket = assign(socket, current_user: Accounts.get_user!(user_id))

 socket =
 if socket.assigns.current_user.confirmed_at do
 socket
 else
 redirect(socket, to: "/login")
 end

 {:ok, socket}
end
LiveView v0.17 includes the on_mount (Phoenix.LiveView.on_mount/1) hook,
which allows you to encapsulate this logic and execute it on every mount,
as you would with plug:
defmodule MyAppWeb.UserLiveAuth do
 import Phoenix.Component
 import Phoenix.LiveView
 alias MyAppWeb.Accounts # from `mix phx.gen.auth`

 def on_mount(:default, _params, %{"user_token" => user_token} = _session, socket) do
 socket =
 assign_new(socket, :current_user, fn ->
 Accounts.get_user_by_session_token(user_token)
 end)

 if socket.assigns.current_user.confirmed_at do
 {:cont, socket}
 else
 {:halt, redirect(socket, to: "/login")}
 end
 end
end
We use assign_new/3. This is a
convenience to avoid fetching the current_user multiple times across
LiveViews.
Now we can use the hook whenever relevant:
defmodule MyAppWeb.PageLive do
 use MyAppWeb, :live_view
 on_mount MyAppWeb.UserLiveAuth

 ...
end
If you prefer, you can add the hook to def live_view under MyAppWeb,
to run it on all LiveViews by default:
def live_view do
 quote do
 use Phoenix.LiveView,
 layout: {MyAppWeb.LayoutView, :live}

 on_mount MyAppWeb.UserLiveAuth
 unquote(html_helpers())
 end
end
Events considerations
Every time the user performs an action on your system, you should verify if the user
is authorized to do so, regardless if you are using LiveViews or not. For example,
imagine a user can see all projects in a web application, but they may not have
permission to delete any of them. At the UI level, you handle this accordingly
by not showing the delete button in the projects listing, but a savvy user can
directly talk to the server and request a deletion anyway. For this reason, you
must always verify permissions on the server.
In LiveView, most actions are handled by the handle_event callback. Therefore,
you typically authorize the user within those callbacks. In the scenario just
described, one might implement this:
on_mount MyAppWeb.UserLiveAuth

def mount(_params, _session, socket) do
 {:ok, load_projects(socket)}
end

def handle_event("delete_project", %{"project_id" => project_id}, socket) do
 Project.delete!(socket.assigns.current_user, project_id)
 {:noreply, update(socket, :projects, &Enum.reject(&1, fn p -> p.id == project_id end)}
end

defp load_projects(socket) do
 projects = Project.all_projects(socket.assigns.current_user)
 assign(socket, projects: projects)
end
First, we used on_mount to authenticate the user based on the data stored in
the session. Then we load all projects based on the authenticated user. Now,
whenever there is a request to delete a project, we still pass the current user
as argument to the Project context, so it verifies if the user is allowed to
delete it or not. In case it cannot delete, it is fine to just raise an exception.
After all, users are not meant to trigger this code path anyway (unless they are
fiddling with something they are not supposed to!).
Disconnecting all instances of a live user
So far, the security model between LiveView and regular web applications have
been remarkably similar. After all, we must always authenticate and authorize
every user. The main difference between them happens on logout or when revoking
access.
Because LiveView is a permanent connection between client and server, if a user
is logged out, or removed from the system, this change won't reflect on the
LiveView part unless the user reloads the page.
Luckily, it is possible to address this by setting a live_socket_id in the
session. For example, when logging in a user, you could do:
conn
|> put_session(:current_user_id, user.id)
|> put_session(:live_socket_id, "users_socket:#{user.id}")
Now all LiveView sockets will be identified and listen to the given live_socket_id.
You can then disconnect all live users identified by said ID by broadcasting on
the topic:
MyAppWeb.Endpoint.broadcast("users_socket:#{user.id}", "disconnect", %{})
Note: If you use mix phx.gen.auth to generate your authentication system,
lines to that effect are already present in the generated code. The generated
code uses a user_token instead of referring to the user_id.

Once a LiveView is disconnected, the client will attempt to reestablish
the connection and re-execute the mount/3
callback. In this case, if the user is no longer logged in or it no longer has
access to the current resource, mount/3 will fail and the user will be
redirected.
This is the same mechanism provided by Phoenix.Channels. Therefore, if
your application uses both channels and LiveViews, you can use the same
technique to disconnect any stateful connection.
live_session and live_redirect
LiveView supports live redirect, which allows users to navigate between
pages over the LiveView connection. Whenever there is a live_redirect,
a new LiveView will be mounted, skipping the regular HTTP requests and
without going through the plug pipeline.
However, if you want to draw stronger boundaries between parts of your
application, you can also use Phoenix.LiveView.Router.live_session/2
to group your live routes. This can be handy because you can only
live_redirect between LiveViews in the same live_session.
For example, imagine you need to authenticate two distinct types of users.
Your regular users login via email and password, and you have an admin
dashboard that uses http auth. You can specify different live_sessions
for each authentication flow:
live_session :default do
 scope "/" do
 pipe_through [:authenticate_user]
 get ...
 live ...
 end
end

live_session :admin do
 scope "/admin" do
 pipe_through [:http_auth_admin]
 get ...
 live ...
 end
end
Now every time you try to navigate to an admin panel, and out of it,
a regular page navigation will happen and a brand new live connection
will be established.
Once again, it is worth remembering that LiveViews require their own
security checks, so we use pipe_through above to protect the regular
routes (get, post, etc.) and the LiveViews should run their own checks
using on_mount hooks.
live_session can also be used to enforce each LiveView group has
a different root layout, since layouts are not updated between live
redirects:
live_session :default, root_layout: {LayoutView, "app.html"} do
 ...
end

live_session :admin, root_layout: {LayoutView, "admin.html"} do
 ...
end
Finally, you can even combine live_session with on_mount. Instead
of declaring on_mount on every LiveView, you can declare it at the
router level and it will enforce it on all LiveViews under it:
live_session :default, on_mount: MyAppWeb.UserLiveAuth do
 scope "/" do
 pipe_through [:authenticate_user]
 live ...
 end
end

live_session :admin, on_mount: MyAppWeb.AdminLiveAuth do
 scope "/admin" do
 pipe_through [:authenticate_admin]
 live ...
 end
end
Each live route under the :default live_session will invoke
the MyAppWeb.UserLiveAuth hook on mount. This module was defined
earlier in this guide. We will also pipe regular web requests through
:authenticate_user, which must execute the same checks as
MyAppWeb.UserLiveAuth, but tailored to plug.
Similarly, the :admin live_session has its own authentication
flow, powered by MyAppWeb.AdminLiveAuth. It also defines a plug
equivalent named :authenticate_admin, which will be used by any
regular request. If there are no regular web requests defined under
a live session, then the pipe_through checks are not necessary.
Declaring the on_mount on live_session is exactly the same as
declaring it in each LiveView inside the live_session. It will be
executed every time a LiveView is mounted, even after live_redirects.
The important concepts to keep in mind are:
	If you have both LiveViews and regular web requests, then you
must always authorize and authenticate your LiveViews (using
on mount hooks) and your web requests (using plugs)

	All actions (events) must also be explicitly authorized by
checking permissions. Those permissions are often domain/business
specific, and typically happen in your context modules

	live_session can be used to draw boundaries between groups of
LiveViews. While you could use live_session to draw lines between
different authorization rules, doing so would lead to frequent page
reloads. For this reason, we typically use live_session to enforce
different authentication requirements or whenever you need to
change root layouts

 Telemetry - Phoenix LiveView v0.19.3

Telemetry

LiveView currently exposes the following telemetry events:
	[:phoenix, :live_view, :mount, :start] - Dispatched by a Phoenix.LiveView
immediately before mount/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :mount, :stop] - Dispatched by a Phoenix.LiveView
when the mount/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :mount, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the mount/3 callback.
	Measurement: %{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 params: unsigned_params | :not_mounted_at_router,
 session: map,
 uri: String.t() | nil
}

	[:phoenix, :live_view, :handle_params, :start] - Dispatched by a Phoenix.LiveView
immediately before handle_params/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_params, :stop] - Dispatched by a Phoenix.LiveView
when the handle_params/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_params, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the handle_params/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_event, :start] - Dispatched by a Phoenix.LiveView
immediately before handle_event/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :handle_event, :stop] - Dispatched by a Phoenix.LiveView
when the handle_event/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :handle_event, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the handle_event/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :start] - Dispatched by a Phoenix.LiveComponent
immediately before handle_event/3 is invoked.
	Measurement:
%{system_time: System.monotonic_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :stop] - Dispatched by a Phoenix.LiveComponent
when the handle_event/3 callback completes successfully.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :exception] - Dispatched by a Phoenix.LiveComponent
when an exception is raised in the handle_event/3 callback.
	Measurement:
%{duration: native_time}

	Metadata:
%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

 Uploads - Phoenix LiveView v0.19.3

Uploads

LiveView supports interactive file uploads with progress for
both direct to server uploads as well as direct-to-cloud
external uploads on the client.
Built-in Features
	Accept specification - Define accepted file types, max
number of entries, max file size, etc. When the client
selects file(s), the file metadata is automatically
validated against the specification. See
Phoenix.LiveView.allow_upload/3.

	Reactive entries - Uploads are populated in an
@uploads assign in the socket. Entries automatically
respond to progress, errors, cancellation, etc.

	Drag and drop - Use the phx-drop-target attribute to
enable. See Phoenix.Component.live_file_input/1.

Allow uploads
You enable an upload, typically on mount, via allow_upload/3:
@impl Phoenix.LiveView
def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: ~w(.jpg .jpeg), max_entries: 2)}
end
That's it for now! We will come back to the LiveView to
implement some form- and upload-related callbacks later, but
most of the functionality around uploads takes place in the
template.
Render reactive elements
Use the Phoenix.Component.live_file_input/1 component
to render a file input for the upload:
<%!-- lib/my_app_web/live/upload_live.html.heex --%>

<form id="upload-form" phx-submit="save" phx-change="validate">
 <.live_file_input upload={@uploads.avatar} />
 <button type="submit">Upload</button>
</form>
Important: You must bind phx-submit and phx-change on the form.

Note that while live_file_input/1
allows you to set additional attributes on the file input,
many attributes such as id, accept, and multiple will
be set automatically based on the allow_upload/3 spec.
Reactive updates to the template will occur as the end-user
interacts with the file input.
Upload entries
Uploads are populated in an @uploads assign in the socket.
Each allowed upload contains a list of entries,
irrespective of the :max_entries value in the
allow_upload/3 spec. These entry structs contain all the
information about an upload, including progress, client file
info, errors, etc.
Let's look at an annotated example:
<%!-- lib/my_app_web/live/upload_live.html.heex --%>

<%!-- use phx-drop-target with the upload ref to enable file drag and drop --%>
<section phx-drop-target={@uploads.avatar.ref}>

<%!-- render each avatar entry --%>
<%= for entry <- @uploads.avatar.entries do %>
 <article class="upload-entry">

 <figure>
 <.live_img_preview entry={entry} />
 <figcaption><%= entry.client_name %></figcaption>
 </figure>

 <%!-- entry.progress will update automatically for in-flight entries --%>
 <progress value={entry.progress} max="100"> <%= entry.progress %>% </progress>

 <%!-- a regular click event whose handler will invoke Phoenix.LiveView.cancel_upload/3 --%>
 <button type="button" phx-click="cancel-upload" phx-value-ref={entry.ref} aria-label="cancel">×</button>

 <%!-- Phoenix.Component.upload_errors/2 returns a list of error atoms --%>
 <%= for err <- upload_errors(@uploads.avatar, entry) do %>
 <p class="alert alert-danger"><%= error_to_string(err) %></p>
 <% end %>

 </article>
<% end %>

<%!-- Phoenix.Component.upload_errors/1 returns a list of error atoms --%>
<%= for err <- upload_errors(@uploads.avatar) do %>
 <p class="alert alert-danger"><%= error_to_string(err) %></p>
<% end %>

</section>
The section element in the example acts as the
phx-drop-target for the :avatar upload. Users can interact
with the file input or they can drop files over the element
to add new entries.
Upload entries are created when a file is added to the form
input and each will exist until it has been consumed,
following a successfully completed upload.
Entry validation
Validation occurs automatically based on any conditions
that were specified in allow_upload/3 however, as
mentioned previously you are required to bind phx-change
on the form in order for the validation to be performed.
Therefore you must implement at least a minimal callback:
@impl Phoenix.LiveView
def handle_event("validate", _params, socket) do
 {:noreply, socket}
end
Entries for files that do not match the allow_upload/3
spec will contain errors. Use
Phoenix.Component.upload_errors/2 and your own
helper function to render a friendly error message:
def error_to_string(:too_large), do: "Too large"
def error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
For error messages that affect all entries, use
Phoenix.Component.upload_errors/1, and your own
helper function to render a friendly error message:
def error_to_string(:too_many_files), do: "You have selected too many files"
Cancel an entry
Upload entries may also be canceled, either programmatically
or as a result of a user action. For instance, to handle the
click event in the template above, you could do the following:
@impl Phoenix.LiveView
def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
end
Consume uploaded entries
When the end-user submits a form containing a live_file_input/1,
the JavaScript client first uploads the file(s) before
invoking the callback for the form's phx-submit event.
Within the callback for the phx-submit event, you invoke
the Phoenix.LiveView.consume_uploaded_entries/3 function
to process the completed uploads, persisting the relevant
upload data alongside the form data:
@impl Phoenix.LiveView
def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join([:code.priv_dir(:my_app), "static", "uploads", Path.basename(path)])
 # The `static/uploads` directory must exist for `File.cp!/2`
 # and MyAppWeb.static_paths/0 should contain uploads to work,.
 File.cp!(path, dest)
 {:ok, ~p"/uploads/#{Path.basename(dest)}"}
 end)

 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
end
Note: While client metadata cannot be trusted, max file
size validations are enforced as each chunk is received
when performing direct to server uploads.

For more information on implementing client-side,
direct-to-cloud uploads, see the External Uploads guide.
Appendix A: UploadLive
A complete example of the LiveView from this guide:
lib/my_app_web/live/upload_live.ex
defmodule MyAppWeb.UploadLive do
 use MyAppWeb, :live_view

 @impl Phoenix.LiveView
 def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: ~w(.jpg .jpeg), max_entries: 2)}
 end

 @impl Phoenix.LiveView
 def handle_event("validate", _params, socket) do
 {:noreply, socket}
 end

 @impl Phoenix.LiveView
 def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
 end

 @impl Phoenix.LiveView
 def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join([:code.priv_dir(:my_app), "static", "uploads", Path.basename(path)])
 File.cp!(path, dest)
 {:ok, ~p"/uploads/#{Path.basename(dest)}"}
 end)

 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
 end

 defp error_to_string(:too_large), do: "Too large"
 defp error_to_string(:too_many_files), do: "You have selected too many files"
 defp error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
end

 Gettext for internationalization - Phoenix LiveView v0.19.3

Gettext for internationalization

For internationalization with gettext,
you must call Gettext.put_locale/2 on the LiveView mount callback to instruct
the LiveView which locale should be used for rendering the page.
However, one question that has to be answered is how to retrieve the locale in
the first place. There are many approaches to solve this problem:
	The locale could be stored in the URL as a parameter
	The locale could be stored in the session
	The locale could be stored in the database

We will briefly cover these approaches to provide some direction.
Locale from parameters
You can say all URLs have a locale parameter. In your router:
scope "/:locale" do
 live ...
 get ...
end
Accessing a page without a locale should automatically redirect
to a URL with locale (the best locale could be fetched from
HTTP headers, which is outside of the scope of this guide).
Then, assuming all URLs have a locale, you can set the Gettext
locale accordingly:
def mount(%{"locale" => locale}, _session, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:ok, socket}
end
You can also use the on_mount hook to
automatically restore the locale for every LiveView in your application:
defmodule MyAppWeb.RestoreLocale do
 def on_mount(:default, %{"locale" => locale}, _session, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:cont, socket}
 end

 # catch-all case
 def on_mount(:default, _params, _session, socket), do: {:cont, socket}
end
Then, add this hook to def live_view under MyAppWeb, to run it on all
LiveViews by default:
def live_view do
 quote do
 use Phoenix.LiveView,
 layout: {MyAppWeb.LayoutView, :live}

 on_mount MyAppWeb.RestoreLocale
 unquote(view_helpers())
 end
end
Note that, because the Gettext locale is not stored in the assigns, if you
want to change the locale, you must use <.link navigate={...} />, instead
of simply patching the page.
Locale from session
You may also store the locale in the Plug session. For example, in a controller
you might do:
def put_user_session(conn, current_user) do
 Gettext.put_locale(MyApp.Gettext, current_user.locale)

 conn
 |> put_session(:user_id, current_user.id)
 |> put_session(:locale, current_user.locale)
end
and then restore the locale from session within your LiveView mount:
def mount(_params, %{"locale" => locale}, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:ok, socket}
end
You can also encapsulate this in a hook, as done in the previous section.
However, if the locale is stored in the session, you can only change it
by using regular controller requests. Therefore you should always use
<.link to={...} /> to point to a controller that change the session
accordingly, reloading any LiveView.
Locale from database
You may also allow users to store their locale configuration in the database.
Then, on mount/3, you can retrieve the user id from the session and load
the locale:
def mount(_params, %{"user_id" => user_id}, socket) do
 user = Users.get_user!(user_id)
 Gettext.put_locale(MyApp.Gettext, user.locale)
 {:ok, socket}
end
In practice, you may end-up mixing more than one approach listed here.
For example, reading from the database is great once the user is logged in
but, before that happens, you may need to store the locale in the session
or in the URL.
Similarly, you can keep the locale in the URL, but change the URL accordingly
to the user preferred locale once they sign in. Hopefully this guide gives
some suggestions on how to move forward and explore the best approach for your
application.

 Bindings - Phoenix LiveView v0.19.3

Bindings

Phoenix supports DOM element bindings for client-server interaction. For
example, to react to a click on a button, you would render the element:
<button phx-click="inc_temperature">+</button>
Then on the server, all LiveView bindings are handled with the handle_event
callback, for example:
def handle_event("inc_temperature", _value, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end
	Binding	Attributes
	Params	phx-value-*
	Click Events	phx-click, phx-click-away
	Form Events	phx-change, phx-submit, phx-feedback-for, phx-disable-with, phx-trigger-action, phx-auto-recover
	Focus Events	phx-blur, phx-focus, phx-window-blur, phx-window-focus
	Key Events	phx-keydown, phx-keyup, phx-window-keydown, phx-window-keyup, phx-key
	Scroll Events	phx-viewport-top, phx-viewport-bottom
	DOM Patching	phx-mounted, phx-update, phx-remove
	JS Interop	phx-hook
	Lifecycle Events	phx-mounted, phx-disconnected, phx-connected
	Rate Limiting	phx-debounce, phx-throttle
	Static tracking	phx-track-static

Click Events
The phx-click binding is used to send click events to the server.
When any client event, such as a phx-click click is pushed, the value
sent to the server will be chosen with the following priority:
	The :value specified in Phoenix.LiveView.JS.push/3, such as:
<div phx-click={JS.push("inc", value: %{myvar1: @val1})}>

	Any number of optional phx-value- prefixed attributes, such as:
<div phx-click="inc" phx-value-myvar1="val1" phx-value-myvar2="val2">
will send the following map of params to the server:
def handle_event("inc", %{"myvar1" => "val1", "myvar2" => "val2"}, socket) do
If the phx-value- prefix is used, the server payload will also contain a "value"
if the element's value attribute exists.

	The payload will also include any additional user defined metadata of the client event.
For example, the following LiveSocket client option would send the coordinates and
altKey information for all clicks:
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 click: (e, el) => {
 return {
 altKey: e.altKey,
 clientX: e.clientX,
 clientY: e.clientY
 }
 }
 }
})

The phx-click-away event is fired when a click event happens outside of the element.
This is useful for hiding toggled containers like drop-downs.
Focus and Blur Events
Focus and blur events may be bound to DOM elements that emit
such events, using the phx-blur, and phx-focus bindings, for example:
<input name="email" phx-focus="myfocus" phx-blur="myblur"/>
To detect when the page itself has received focus or blur,
phx-window-focus and phx-window-blur may be specified. These window
level events may also be necessary if the element in consideration
(most often a div with no tabindex) cannot receive focus. Like other
bindings, phx-value-* can be provided on the bound element, and those
values will be sent as part of the payload. For example:
<div class="container"
 phx-window-focus="page-active"
 phx-window-blur="page-inactive"
 phx-value-page="123">
 ...
</div>
Key Events
The onkeydown, and onkeyup events are supported via the phx-keydown,
and phx-keyup bindings. Each binding supports a phx-key attribute, which triggers
the event for the specific key press. If no phx-key is provided, the event is triggered
for any key press. When pushed, the value sent to the server will contain the "key"
that was pressed, plus any user-defined metadata. For example, pressing the
Escape key looks like this:
%{"key" => "Escape"}
To capture additional user-defined metadata, the metadata option for keydown events
may be provided to the LiveSocket constructor. For example:
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 keydown: (e, el) => {
 return {
 key: e.key,
 metaKey: e.metaKey,
 repeat: e.repeat
 }
 }
 }
})
To determine which key has been pressed you should use key value. The
available options can be found on
MDN
or via the Key Event Viewer.
Note: it is possible for certain browser features like autofill to trigger key events
with no "key" field present in the value map sent to the server. For this reason, we
recommend always having a fallback catch-all event handler for LiveView key bindings.
By default, the bound element will be the event listener, but a
window-level binding may be provided via phx-window-keydown or phx-window-keyup,
for example:
def render(assigns) do
 ~H"""
 <div id="thermostat" phx-window-keyup="update_temp">
 Current temperature: <%= @temperature %>
 </div>
 """
end

def handle_event("update_temp", %{"key" => "ArrowUp"}, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end

def handle_event("update_temp", %{"key" => "ArrowDown"}, socket) do
 {:ok, new_temp} = Thermostat.dec_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end

def handle_event("update_temp", _, socket) do
 {:noreply, socket}
end
Scroll Events and Infinite Stream pagination
The phx-viewport-top and phx-viewport-bottom bindings allow you to detect when a container's
first child reaches the top of the viewport, or the last child reaches the bottom of the viewport.
This is useful for infinite scrolling where you want to send paging events for the next results set or previous results set as the user is scrolling up and down and reaches the top or bottom of the viewport.
Generally, applications will add padding above and below a container when performing infinite scrolling to allow smooth scrolling as results are loaded. Combined with Phoenix.LiveView.stream/3, the phx-viewport-top and phx-viewport-bottom allow for infinite virtualized list that only keeps a small set of actual elements in the DOM. For example:
def mount(_, _, socket) do
 {:ok,
 socket
 |> assign(page: 1, per_page: 20)
 |> paginate_posts(1)}
end

defp paginate_posts(socket, new_page) when new_page >= 1 do
 %{per_page: per_page, page: cur_page} = socket.assigns
 posts = Blog.list_posts(offset: (new_page - 1) * per_page, limit: per_page)

 {posts, at, limit} =
 if new_page >= cur_page do
 {posts, -1, per_page * 3 * -1}
 else
 {Enum.reverse(posts), 0, per_page * 3}
 end

 case posts do
 [] ->
 assign(socket, end_of_timeline?: at == -1)

 [_ | _] = posts ->
 socket
 |> assign(end_of_timeline?: false) socket
 |> assign(:page, new_page)
 |> stream(:posts, posts, at: at, limit: limit)
 end
end
Our paginate_posts function fetches a page of posts, and determines if the user is paging to a previous page or next page. Based on the direction of paging, the stream is either prepended to, or appended to with at of 0 or -1 respectively. We also set the limit of the stream to three times the per_page to allow enough posts in the UI to appear as an infinite list, but small enough to maintain UI performance. We also set an @end_of_timeline? assign to track whether the user is at the end of results or not. Finally, we update the @page assign and posts stream. We can then wire up our container to support the viewport events:
<ul
 id="posts"
 phx-update="stream"
 phx-viewport-top={@page > 1 && "prev-page"}
 phx-viewport-bottom={!@end_of_timeline? && "next-page"}
 phx-page-loading
 class={[
 if(@end_of_timeline?, do: "pb-10", else: "pb-[calc(200vh)]"),
 if(@page == 1, do: "pt-10", else: "pt-[calc(200vh)]")
]}
>
 <li :for={{id, post} <- @streams.posts} id={id}>
 <.post_card post={post}>

<div :if={@end_of_timeline?} class="mt-5 text-[50px] text-center">
 🎉 You made it to the beginning of time 🎉
</div>
There's not much here, but that's the point! This little snippet of UI is driving a fully virtualized list with bidirectional infinite scrolling. We use the phx-viewport-top binding to send the "prev-page" event to the LiveView, but only if the user is beyond the first page. It doesn't make sense to load negative page results, so we remove the binding entirely in those cases. Next, we wire up phx-viewport-bottom to send the "next-page" event, but only if we've yet to reach the end of the timeline. Finally, we conditionally apply some css classes which sets a large top and bottom padding to twice the viewport height based on the current pagination for smooth scrolling.
To complete our solution, we only need to handle the "prev-page" and "next-page" events in the LiveView:
def handle_event("next-page", _, socket) do
 {:noreply, paginate_posts(socket, socket.assigns.page + 1)}
end

def handle_event("prev-page", %{"_overran" => true}, socket) do
 {:noreply, paginate_posts(socket, 1)}
end

def handle_event("prev-page", _, socket) do
 if socket.assigns.page > 1 do
 {:noreply, paginate_posts(socket, socket.assigns.page - 1)}
 else
 {:noreply, socket}
 end
end
This code simply calls the paginate_posts function we defined as our first step, using the current or next page to drive the results. Notice that we match on a special "_overran" => true parameter in our "prev-page" event. The viewport events send this parameter when the user has "overran" the viewport top or bottom. Imagine the case where the user is scrolling back up through many pages of results, but grabs the scrollbar and returns immediately to the top of the page. This means our <ul id="posts"> container was overrun by the top of the viewport, and we need to reset the the UI to page the first page.
Rate limiting events with Debounce and Throttle
All events can be rate-limited on the client by using the
phx-debounce and phx-throttle bindings, with the exception of the phx-blur
binding, which is fired immediately.
Rate limited and debounced events have the following behavior:
	phx-debounce - Accepts either an integer timeout value (in milliseconds),
or "blur". When an integer is provided, emitting the event is delayed by
the specified milliseconds. When "blur" is provided, emitting the event is
delayed until the field is blurred by the user. When the value is omitted
a default of 300ms is used. Debouncing is typically used for input elements.

	phx-throttle - Accepts an integer timeout value to throttle the event in milliseconds.
Unlike debounce, throttle will immediately emit the event, then rate limit it at once
per provided timeout. When the value is omitted a default of 300ms is used.
Throttling is typically used to rate limit clicks, mouse and keyboard actions.

For example, to avoid validating an email until the field is blurred, while validating
the username at most every 2 seconds after a user changes the field:
<form phx-change="validate" phx-submit="save">
 <input type="text" name="user[email]" phx-debounce="blur"/>
 <input type="text" name="user[username]" phx-debounce="2000"/>
</form>
And to rate limit a volume up click to once every second:
<button phx-click="volume_up" phx-throttle="1000">+</button>
Likewise, you may throttle held-down keydown:
<div phx-window-keydown="keydown" phx-throttle="500">
 ...
</div>
Unless held-down keys are required, a better approach is generally to use
phx-keyup bindings which only trigger on key up, thereby being self-limiting.
However, phx-keydown is useful for games and other use cases where a constant
press on a key is desired. In such cases, throttle should always be used.
Debounce and Throttle special behavior
The following specialized behavior is performed for forms and keydown bindings:
	When a phx-submit, or a phx-change for a different input is triggered,
any current debounce or throttle timers are reset for existing inputs.

	A phx-keydown binding is only throttled for key repeats. Unique keypresses
back-to-back will dispatch the pressed key events.

JS Commands
LiveView bindings support a JavaScript command interface via the Phoenix.LiveView.JS module, which allows you to specify utility operations that execute on the client when firing phx- binding events, such as phx-click, phx-change, etc. Commands compose together to allow you to push events, add classes to elements, transition elements in and out, and more.
See the Phoenix.LiveView.JS documentation for full usage.
For a small example of what's possible, imagine you want to show and hide a modal on the page without needing to make the round trip to the server to render the content:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.show(to: "#modal", transition: "fade-in")}>
 show modal
</button>

<button phx-click={JS.hide(to: "#modal", transition: "fade-out")}>
 hide modal
</button>

<button phx-click={JS.toggle(to: "#modal", in: "fade-in", out: "fade-out")}>
 toggle modal
</button>
Or if your UI library relies on classes to perform the showing or hiding:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.add_class("show", to: "#modal", transition: "fade-in")}>
 show modal
</button>

<button phx-click={JS.remove_class("show", to: "#modal", transition: "fade-out")}>
 hide modal
</button>
Commands compose together. For example, you can push an event to the server and
immediately hide the modal on the client:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.push("modal-closed") |> JS.remove_class("show", to: "#modal", transition: "fade-out")}>
 hide modal
</button>
It is also useful to extract commands into their own functions:
alias Phoenix.LiveView.JS

def hide_modal(js \\ %JS{}, selector) do
 js
 |> JS.push("modal-closed")
 |> JS.remove_class("show", to: selector, transition: "fade-out")
end
<button phx-click={hide_modal("#modal")}>hide modal</button>
The Phoenix.LiveView.JS.push/3 command is particularly powerful in allowing you to customize the event being pushed to the server. For example, imagine you start with a familiar phx-click which pushes a message to the server when clicked:
<button phx-click="clicked">click</button>
Now imagine you want to customize what happens when the "clicked" event is pushed, such as which component should be targeted, which element should receive css loading state classes, etc. This can be accomplished with options on the JS push command. For example:
<button phx-click={JS.push("clicked", target: @myself, loading: ".container")}>click</button>
See Phoenix.LiveView.JS.push/3 for all supported options.
Lifecycle Events
LiveView supports the phx-mounted, phx-connected, and phx-disconnected events to react to
different lifecycle events with JS commands.
To execute commands when an element first appears on the page, you can leverage phx-mounted,
such as to animate a notice into view:
<div id="flash" class="hidden" phx-mounted={JS.show(transition: ...)}>
 Welcome back!
</div>
If phx-mounted is used on the initial page render, it will be invoked only after the initial WebSocket connection is established.
To manage the connection lifecycle, you can combine phx-disconnected and phx-connected to show an element when the LiveView has lost its connection, and hide it when the connection recovers:
<div id="status" class="hidden" phx-disconnected={JS.show()} phx-connected={JS.hide()}>
 Attempting to reconnect...
</div>
LiveView vs static view
phx-connected and phx-disconnected are only executed when operating
inside a LiveView container. For static templates, they will have no effect.
For LiveView, the phx-mounted binding is executed as soon as the LiveView is
mounted with a connection. When using phx-mounted in static views, it is executed
as soon as the DOM is ready.
LiveView Specific Events
The lv: event prefix supports LiveView specific features that are handled
by LiveView without calling the user's handle_event/3 callbacks. Today,
the following events are supported:
	lv:clear-flash – clears the flash when sent to the server. If a
phx-value-key is provided, the specific key will be removed from the flash.

For example:
<p class="alert" phx-click="lv:clear-flash" phx-value-key="info">
 <%= live_flash(@flash, :info) %>
</p>
Loading states and errors
All phx- event bindings apply their own css classes when pushed. For example
the following markup:
<button phx-click="clicked" phx-window-keydown="key">...</button>
On click, would receive the phx-click-loading class, and on keydown would receive
the phx-keydown-loading class. The css loading classes are maintained until an
acknowledgement is received on the client for the pushed event.
In the case of forms, when a phx-change is sent to the server, the input element
which emitted the change receives the phx-change-loading class, along with the
parent form tag. The following events receive css loading classes:
	phx-click - phx-click-loading
	phx-change - phx-change-loading
	phx-submit - phx-submit-loading
	phx-focus - phx-focus-loading
	phx-blur - phx-blur-loading
	phx-window-keydown - phx-keydown-loading
	phx-window-keyup - phx-keyup-loading

Additionally, the following classes are applied to the LiveView's parent
container:
	"phx-connected" - applied when the view has connected to the server
	"phx-loading" - applied when the view is not connected to the server
	"phx-error" - applied when an error occurs on the server. Note, this
class will be applied in conjunction with "phx-loading" if connection
to the server is lost.

For navigation related loading states (both automatic and manual), see phx-page-loading as described in
JavaScript interoperability: Live navigation events.

 DOM patching

 Form bindings - Phoenix LiveView v0.19.3

Form bindings

Form Events
To handle form changes and submissions, use the phx-change and phx-submit
events. In general, it is preferred to handle input changes at the form level,
where all form fields are passed to the LiveView's callback given any
single input change. For example, to handle real-time form validation and
saving, your form would use both phx-change and phx-submit bindings.
Let's get started with an example:
<.form for={@form} phx-change="validate" phx-submit="save">
 <.input type="text" field={@form[:username]} />
 <.input type="email" field={@form[:email]} />
 <button>Save</button>
</.form>
.form is the function component defined in Phoenix.Component.form/1,
we recommend reading its documentation for more details on how it works
and all supported options. .form expects a @form assign, which can
be created from a changeset or user parameters via Phoenix.Component.to_form/1.
input/1 is a function component for rendering inputs, most often
defined in your own application, often encapsulating labelling,
error handling, and more. Here is a simple version to get started with:
attr :field, Phoenix.HTML.FormField
attr :rest, include: ~w(type)
def input(assigns) do
 ~H"""
 <input id={@field.id} name={@field.name} value={@field.value} {@rest} />
 """
end
The CoreComponents module
If your application was generated with Phoenix v1.7, then mix phx.new
automatically imports many ready-to-use function components, such as
.input component with built-in features and styles.

With the form rendered, your LiveView picks up the events in handle_event
callbacks, to validate and attempt to save the parameter accordingly:
def render(assigns) ...

def mount(_params, _session, socket) do
 {:ok, assign(socket, form: to_form(Accounts.change_user(%User{})))}
end

def handle_event("validate", %{"user" => params}, socket) do
 form =
 %User{}
 |> Accounts.change_user(params)
 |> Map.put(:action, :insert)
 |> to_form()

 {:noreply, assign(socket, form: form)}
end

def handle_event("save", %{"user" => user_params}, socket) do
 case Accounts.create_user(user_params) do
 {:ok, user} ->
 {:noreply,
 socket
 |> put_flash(:info, "user created")
 |> redirect(to: ~p"/users/#{user}")}

 {:error, %Ecto.Changeset{} = changeset} ->
 {:noreply, assign(socket, form: to_form(changeset))}
 end
end
The validate callback simply updates the changeset based on all form input
values, then convert the changeset to a form and assign it to the socket.
If the form changes, such as generating new errors, render/1
is invoked and the form is re-rendered.
Likewise for phx-submit bindings, the same callback is invoked and
persistence is attempted. On success, a :noreply tuple is returned and the
socket is annotated for redirect with Phoenix.LiveView.redirect/2 to
the new user page, otherwise the socket assigns are updated with the errored
changeset to be re-rendered for the client.
You may wish for an individual input to use its own change event or to target
a different component. This can be accomplished by annotating the input itself
with phx-change, for example:
<.form for={@form} phx-change="validate" phx-submit="save">
 ...
 <.input field={@form[:email]} phx-change="email_changed" phx-target={@myself} />
</.form>
Then your LiveView or LiveComponent would handle the event:
def handle_event("email_changed", %{"user" => %{"email" => email}}, socket) do
 ...
end
Note: only the individual input is sent as params for an input marked with phx-change.
phx-feedback-for
For proper form error tag updates, the error tag must specify which
input it belongs to. This is accomplished with the phx-feedback-for attribute,
which specifies the name (or id, for backwards compatibility) of the input it belongs to.
Failing to add the phx-feedback-for attribute will result in displaying error
messages for form fields that the user has not changed yet (e.g. required
fields further down on the page).
For example, your MyAppWeb.CoreComponents may use this function:
def input(assigns) do
 ~H"""
 <div phx-feedback-for={@name}>
 <input
 type={@type}
 name={@name}
 id={@id || @name}
 value={Phoenix.HTML.Form.normalize_value(@type, @value)}
 class={[
 "phx-no-feedback:border-zinc-300 phx-no-feedback:focus:border-zinc-400",
 "border-zinc-300 focus:border-zinc-400 focus:ring-zinc-800/5",
]}
 {@rest}
 />
 <.error :for={msg <- @errors}><%%= msg %></.error>
 </div>
 """
end

def error(assigns) do
 ~H"""
 <p class="phx-no-feedback:hidden">
 <Heroicons.exclamation_circle mini class="mt-0.5 h-5 w-5 flex-none fill-rose-500" />
 <%= render_slot(@inner_block) %>
 </p>
 """
end
Now, any DOM container with the phx-feedback-for attribute will receive a
phx-no-feedback class in cases where the form fields has yet to receive
user input/focus. Using new CSS rules or tailwindcss variants allows you
errors to be shown, hidden, and styled as feedback changes.
Number inputs
Number inputs are a special case in LiveView forms. On programmatic updates,
some browsers will clear invalid inputs. So LiveView will not send change events
from the client when an input is invalid, instead allowing the browser's native
validation UI to drive user interaction. Once the input becomes valid, change and
submit events will be sent normally.
<input type="number">
This is known to have a plethora of problems including accessibility, large numbers
are converted to exponential notation, and scrolling can accidentally increase or
decrease the number.
One alternative is the inputmode attribute, which may serve your application's needs
and users much better. According to Can I Use?,
the following is supported by 86% of the global market (as of Sep 2021):
<input type="text" inputmode="numeric" pattern="[0-9]*">
Password inputs
Password inputs are also special cased in Phoenix.HTML. For security reasons,
password field values are not reused when rendering a password input tag. This
requires explicitly setting the :value in your markup, for example:
<.input field={f[:password]} value={input_value(f[:password].value)} />
<.input field={f[:password_confirmation]} value={input_value(f[:password_confirmation].value)} />
Nested inputs
Nested inputs are handled using .inputs_for function component. By default
it will add the necessary hidden input fields for tracking ids of Ecto associations.
<.inputs_for :let={fp} field={f[:friends]}>
 <.input field={fp[:name]} type="text">
</.inputs_for>
File inputs
LiveView forms support reactive file inputs,
including drag and drop support via the phx-drop-target
attribute:
<div class="container" phx-drop-target={@uploads.avatar.ref}>
 ...
 <.live_file_input upload={@uploads.avatar} />
</div>
See Phoenix.Component.live_file_input/1 for more.
Submitting the form action over HTTP
The phx-trigger-action attribute can be added to a form to trigger a standard
form submit on DOM patch to the URL specified in the form's standard action
attribute. This is useful to perform pre-final validation of a LiveView form
submit before posting to a controller route for operations that require
Plug session mutation. For example, in your LiveView template you can
annotate the phx-trigger-action with a boolean assign:
<.form :let={f} for={@changeset}
 action={Routes.reset_password_path(@socket, :create)}
 phx-submit="save"
 phx-trigger-action={@trigger_submit}>
Then in your LiveView, you can toggle the assign to trigger the form with the current
fields on next render:
def handle_event("save", params, socket) do
 case validate_change_password(socket.assigns.user, params) do
 {:ok, changeset} ->
 {:noreply, assign(socket, changeset: changeset, trigger_submit: true)}

 {:error, changeset} ->
 {:noreply, assign(socket, changeset: changeset)}
 end
end
Once phx-trigger-action is true, LiveView disconnects and then submits the form.
Recovery following crashes or disconnects
By default, all forms marked with phx-change and having id
attribute will recover input values automatically after the user has
reconnected or the LiveView has remounted after a crash. This is
achieved by the client triggering the same phx-change to the server
as soon as the mount has been completed.
Note: if you want to see form recovery working in development, please
make sure to disable live reloading in development by commenting out the
LiveReload plug in your endpoint.ex file or by setting code_reloader: false
in your config/dev.exs. Otherwise live reloading may cause the current page
to be reloaded whenever you restart the server, which will discard all form
state.
For most use cases, this is all you need and form recovery will happen
without consideration. In some cases, where forms are built step-by-step in a
stateful fashion, it may require extra recovery handling on the server outside
of your existing phx-change callback code. To enable specialized recovery,
provide a phx-auto-recover binding on the form to specify a different event
to trigger for recovery, which will receive the form params as usual. For example,
imagine a LiveView wizard form where the form is stateful and built based on what
step the user is on and by prior selections:
<form id="wizard" phx-change="validate_wizard_step" phx-auto-recover="recover_wizard">
On the server, the "validate_wizard_step" event is only concerned with the
current client form data, but the server maintains the entire state of the wizard.
To recover in this scenario, you can specify a recovery event, such as "recover_wizard"
above, which would wire up to the following server callbacks in your LiveView:
def handle_event("validate_wizard_step", params, socket) do
 # regular validations for current step
 {:noreply, socket}
end

def handle_event("recover_wizard", params, socket) do
 # rebuild state based on client input data up to the current step
 {:noreply, socket}
end
To forgo automatic form recovery, set phx-auto-recover="ignore".
Resetting Forms
To reset a LiveView form, you can use the standard type="reset" on a
form button or input. When clicked, the form inputs will be reset to their
original values, and Phoenix will hide errors for phx-fedback-for elements.
After the form is reset, a phx-change event is emitted with the _target param
containing the reset name. For example, the following element:
<form phx-change="changed">
 ...
 <button type="reset" name="reset">Reset</button>
</form>
Can be handled on the server differently from your regular change function:
def handle_event("changed", %{"_target" => ["reset"]} = params, socket) do
 # handle form reset
end

def handle_event("changed", params, socket) do
 # handle regular form change
end
JavaScript client specifics
The JavaScript client is always the source of truth for current input values.
For any given input with focus, LiveView will never overwrite the input's current
value, even if it deviates from the server's rendered updates. This works well
for updates where major side effects are not expected, such as form validation
errors, or additive UX around the user's input values as they fill out a form.
For these use cases, the phx-change input does not concern itself with disabling
input editing while an event to the server is in flight. When a phx-change event
is sent to the server, the input tag and parent form tag receive the
phx-change-loading CSS class, then the payload is pushed to the server with a
"_target" param in the root payload containing the keyspace of the input name
which triggered the change event.
For example, if the following input triggered a change event:
<input name="user[username]"/>
The server's handle_event/3 would receive a payload:
%{"_target" => ["user", "username"], "user" => %{"username" => "Name"}}
The phx-submit event is used for form submissions where major side effects
typically happen, such as rendering new containers, calling an external
service, or redirecting to a new page.
On submission of a form bound with a phx-submit event:
	The form's inputs are set to readonly
	Any submit button on the form is disabled
	The form receives the "phx-submit-loading" class

On completion of server processing of the phx-submit event:
	The submitted form is reactivated and loses the "phx-submit-loading" class
	The last input with focus is restored (unless another input has received focus)
	Updates are patched to the DOM as usual

To handle latent events, the <button> tag of a form can be annotated with
phx-disable-with, which swaps the element's innerText with the provided
value during event submission. For example, the following code would change
the "Save" button to "Saving...", and restore it to "Save" on acknowledgment:
<button type="submit" phx-disable-with="Saving...">Save</button>
You may also take advantage of LiveView's CSS loading state classes to
swap out your form content while the form is submitting. For example,
with the following rules in your app.css:
.while-submitting { display: none; }
.inputs { display: block; }

.phx-submit-loading .while-submitting { display: block; }
.phx-submit-loading .inputs { display: none; }
You can show and hide content with the following markup:
<form phx-change="update">
 <div class="while-submitting">Please wait while we save our content...</div>
 <div class="inputs">
 <input type="text" name="text" value={@text}>
 </div>
</form>
Additionally, we strongly recommend including a unique HTML "id" attribute on the form.
When DOM siblings change, elements without an ID will be replaced rather than moved,
which can cause issues such as form fields losing focus.
Triggering phx- form events with JavaScript
Often it is desirable to trigger an event on a DOM element without explicit
user interaction on the element. For example, a custom form element such as a
date picker or custom select input which utilizes a hidden input element to
store the selected state.
In these cases, the event functions on the DOM API can be used, for example
to trigger a phx-change event:
document.getElementById("my-select").dispatchEvent(
 new Event("input", {bubbles: true})
)
When using a client hook, this.el can be used to determine the element as
outlined in the "Client hooks" documentation.
It is also possible to trigger a phx-submit using a "submit" event:
document.getElementById("my-form").dispatchEvent(
 new Event("submit", {bubbles: true, cancelable: true})
)

 JavaScript interoperability - Phoenix LiveView v0.19.3

JavaScript interoperability

To enable LiveView client/server interaction, we instantiate a LiveSocket. For example:
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})
liveSocket.connect()
All options are passed directly to the Phoenix.Socket constructor,
except for the following LiveView specific options:
	bindingPrefix - the prefix to use for phoenix bindings. Defaults "phx-"
	params - the connect_params to pass to the view's mount callback. May be
a literal object or closure returning an object. When a closure is provided,
the function receives the view's element.
	hooks – a reference to a user-defined hooks namespace, containing client
callbacks for server/client interop. See the Client hooks
section below for details.
	uploaders – a reference to a user-defined uploaders namespace, containing
client callbacks for client-side direct-to-cloud uploads. See the
External Uploads guide for details.

Debugging Client Events
To aid debugging on the client when troubleshooting issues, the enableDebug()
and disableDebug() functions are exposed on the LiveSocket JavaScript instance.
Calling enableDebug() turns on debug logging which includes LiveView life-cycle and
payload events as they come and go from client to server. In practice, you can expose
your instance on window for quick access in the browser's web console, for example:
// app.js
let liveSocket = new LiveSocket(...)
liveSocket.connect()
window.liveSocket = liveSocket

// in the browser's web console
>> liveSocket.enableDebug()
The debug state uses the browser's built-in sessionStorage, so it will remain in effect
for as long as your browser session lasts.
Simulating Latency
Proper handling of latency is critical for good UX. LiveView's CSS loading states allow
the client to provide user feedback while awaiting a server response. In development,
near zero latency on localhost does not allow latency to be easily represented or tested,
so LiveView includes a latency simulator with the JavaScript client to ensure your
application provides a pleasant experience. Like the enableDebug() function above,
the LiveSocket instance includes enableLatencySim(milliseconds) and disableLatencySim()
functions which apply throughout the current browser session. The enableLatencySim function
accepts an integer in milliseconds for the round-trip-time to the server. For example:
// app.js
let liveSocket = new LiveSocket(...)
liveSocket.connect()
window.liveSocket = liveSocket

// in the browser's web console
>> liveSocket.enableLatencySim(1000)
[Log] latency simulator enabled for the duration of this browser session.
 Call disableLatencySim() to disable
Event listeners
LiveView emits several events to the browsers and allows developers to submit
their own events too.
Live navigation events
For live page navigation via <.link navigate={...}> and <.link patch={...}>,
their server-side equivalents push_redirect and push_patch, as well as form
submits via phx-submit, the JavaScript events "phx:page-loading-start" and
"phx:page-loading-stop" are dispatched on window. Additionally, any phx-
event may dispatch page loading events by annotating the DOM element with
phx-page-loading. This is useful for showing main page loading status, for example:
// app.js
import topbar from "topbar"
window.addEventListener("phx:page-loading-start", info => topbar.show())
window.addEventListener("phx:page-loading-stop", info => topbar.hide())
Within the callback, info.detail will be an object that contains a kind
key, with a value that depends on the triggering event:
	"redirect" - the event was triggered by a redirect
	"patch" - the event was triggered by a patch
	"initial" - the event was triggered by initial page load
	"element" - the event was triggered by a phx- bound element, such as phx-click

For all kinds of page loading events, all but "element" will receive an additional to
key in the info metadata pointing to the href associated with the page load.
In the case of an "element" page loading event, the info will contain a
"target" key containing the DOM element which triggered the page loading
state.
Handling server-pushed events
When the server uses Phoenix.LiveView.push_event/3, the event name
will be dispatched in the browser with the phx: prefix. For example,
imagine the following template where you want to highlight an existing
element from the server to draw the user's attention:
<div id={"item-#{item.id}"} class="item">
 <%= item.title %>
</div>
Next, the server can issue a highlight using the standard push_event:
def handle_info({:item_updated, item}, socket) do
 {:noreply, push_event(socket, "highlight", %{id: "item-#{item.id}"})}
end
Finally, a window event listener can listen for the event and conditionally
execute the highlight command if the element matches:
let liveSocket = new LiveSocket(...)
window.addEventListener(`phx:highlight`, (e) => {
 let el = document.getElementById(e.detail.id)
 if(el) {
 // logic for highlighting
 }
})
If you desire, you can also integrate this functionality with Phoenix'
JS commands, executing JS commands for the given element whenever highlight
is triggered. First, update the element to embed the JS command into a data
attribute:
<div id={"item-#{item.id}"} class="item" data-highlight={JS.transition("highlight")}>
 <%= item.title %>
</div>
Now, in the event listener, use LiveSocket.execJS to trigger all JS
commands in the new attribute:
let liveSocket = new LiveSocket(...)
window.addEventListener(`phx:highlight`, (e) => {
 document.querySelectorAll(`[data-highlight]`).forEach(el => {
 if(el.id == e.detail.id){
 liveSocket.execJS(el, el.getAttribute("data-highlight"))
 }
 })
})
Client hooks via phx-hook
To handle custom client-side JavaScript when an element is added, updated,
or removed by the server, a hook object may be provided via phx-hook.
phx-hook must point to an object with the following life-cycle callbacks:
	mounted - the element has been added to the DOM and its server
LiveView has finished mounting
	beforeUpdate - the element is about to be updated in the DOM.
Note: any call here must be synchronous as the operation cannot
be deferred or cancelled.
	updated - the element has been updated in the DOM by the server
	destroyed - the element has been removed from the page, either
by a parent update, or by the parent being removed entirely
	disconnected - the element's parent LiveView has disconnected from the server
	reconnected - the element's parent LiveView has reconnected to the server

Note: When using hooks outside the context of a LiveView, mounted is the only
callback invoked, and only those elements on the page at DOM ready will be tracked.
For dynamic tracking of the DOM as elements are added, removed, and updated, a LiveView
should be used.
The above life-cycle callbacks have in-scope access to the following attributes:
	el - attribute referencing the bound DOM node
	liveSocket - the reference to the underlying LiveSocket instance
	pushEvent(event, payload, (reply, ref) => ...) - method to push an event from the client to the LiveView server
	pushEventTo(selectorOrTarget, event, payload, (reply, ref) => ...) - method to push targeted events from the client
to LiveViews and LiveComponents. It sends the event to the LiveComponent or LiveView the selectorOrTarget is
defined in, where its value can be either a query selector or an actual DOM element. If the query selector returns
more than one element it will send the event to all of them, even if all the elements are in the same LiveComponent
or LiveView.
	handleEvent(event, (payload) => ...) - method to handle an event pushed from the server
	upload(name, files) - method to inject a list of file-like objects into an uploader.
	uploadTo(selectorOrTarget, name, files) - method to inject a list of file-like objects into an uploader.
The hook will send the files to the uploader with name defined by allow_upload/3
on the server-side. Dispatching new uploads triggers an input change event which will be sent to the
LiveComponent or LiveView the selectorOrTarget is defined in, where its value can be either a query selector or an
actual DOM element. If the query selector returns more than one live file input, an error will be logged.

For example, the markup for a controlled input for phone-number formatting could be written
like this:
<input type="text" name="user[phone_number]" id="user-phone-number" phx-hook="PhoneNumber" />
Then a hook callback object could be defined and passed to the socket:
let Hooks = {}
Hooks.PhoneNumber = {
 mounted() {
 this.el.addEventListener("input", e => {
 let match = this.el.value.replace(/\D/g, "").match(/^(\d{3})(\d{3})(\d{4})$/)
 if(match) {
 this.el.value = `${match[1]}-${match[2]}-${match[3]}`
 }
 })
 }
}

let liveSocket = new LiveSocket("/live", Socket, {hooks: Hooks, ...})
...
Note: when using phx-hook, a unique DOM ID must always be set.
For integration with client-side libraries which require a broader access to full
DOM management, the LiveSocket constructor accepts a dom option with an
onBeforeElUpdated callback. The fromEl and toEl DOM nodes are passed to the
function just before the DOM patch operations occurs in LiveView. This allows external
libraries to (re)initialize DOM elements or copy attributes as necessary as LiveView
performs its own patch operations. The update operation cannot be cancelled or deferred,
and the return value is ignored.
For example, the following option could be used to add
Alpine.js support to your project:
let liveSocket = new LiveSocket("/live", Socket, {
 ...,
 dom: {
 onBeforeElUpdated(from, to){
 if(from._x_dataStack){ window.Alpine.clone(from, to) }
 }
 },
})
You could also use the same approach to guarantee that some attributes set on the client-side are kept intact.
In the following example, all attributes starting with data-js- won't be replaced when the DOM is patched by LiveView:
onBeforeElUpdated(from, to){
 for (const attr of from.attributes){
 if (attr.name.startsWith("data-js-")){
 to.setAttribute(attr.name, attr.value);
 }
 }
}
Client-server communication
A hook can push events to the LiveView by using the pushEvent function and receive a
reply from the server via a {:reply, map, socket} return value. The reply payload will be
passed to the optional pushEvent response callback.
Communication with the hook from the server can be done by reading data attributes on the
hook element or by using Phoenix.LiveView.push_event/3 on the server and handleEvent on the client.
For example, to implement infinite scrolling, one can pass the current page using data attributes:
<div id="infinite-scroll" phx-hook="InfiniteScroll" data-page={@page}>
And then in the client:
Hooks.InfiniteScroll = {
 page() { return this.el.dataset.page },
 mounted(){
 this.pending = this.page()
 window.addEventListener("scroll", e => {
 if(this.pending == this.page() && scrollAt() > 90){
 this.pending = this.page() + 1
 this.pushEvent("load-more", {})
 }
 })
 },
 updated(){ this.pending = this.page() }
}
However, the data attribute approach is not a good approach if you need to frequently push data to the client. To push out-of-band events to the client, for example to render charting points, one could do:
<div id="chart" phx-hook="Chart">
{:noreply, push_event(socket, "points", %{points: new_points})}
And then on the client:
Hooks.Chart = {
 mounted(){
 this.handleEvent("points", ({points}) => MyChartLib.addPoints(points))
 }
}
Note: remember events pushed from the server via push_event are global and will be dispatched
to all active hooks on the client who are handling that event.
Note: In case a LiveView pushes events and renders content, handleEvent callbacks are invoked after the page is updated. Therefore, if the LiveView redirects at the same time it pushes events, callbacks won't be invoked on the old page's elements. Callbacks would be invoked on the redirected page's newly mounted hook elements.

 External Uploads - Phoenix LiveView v0.19.3

External Uploads

This guide continues from the configuration started in the
server Uploads guide.

Uploads to external cloud providers, such as Amazon S3,
Google Cloud, etc., can be achieved by using the
:external option in allow_upload/3.
You provide a 2-arity function to allow the server to
generate metadata for each upload entry, which is passed to
a user-specified JavaScript function on the client.
Typically when your function is invoked, you will generate a
pre-signed URL, specific to your cloud storage provider, that
will provide temporary access for the end-user to upload data
directly to your cloud storage.
Chunked HTTP Uploads
For any service that supports large file
uploads via chunked HTTP requests with Content-Range
headers, you can use the UpChunk JS library by Mux to do all
the hard work of uploading the file.
You only need to wire the UpChunk instance to the LiveView
UploadEntry callbacks, and LiveView will take care of the rest.
Install UpChunk by
saving its contents
to assets/vendor/upchunk.js or by installing it with npm:
$ npm install --prefix assets --save @mux/upchunk

Configure your uploader on Phoenix.LiveView.mount/3:
def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: :any, max_entries: 3, external: &presign_upload/2)}
end
Supply the :external option to
Phoenix.LiveView.allow_upload/3. It requires a 2-arity
function that generates a signed URL where the client will
push the bytes for the upload entry.
For example, if you were using a context that provided a
start_session
function, you might write something like this:
defp presign_upload(entry, socket) do
 {:ok, %{"Location" => link}} =
 SomeTube.start_session(%{
 "uploadType" => "resumable",
 "x-upload-content-length" => entry.client_size
 })

 {:ok, %{uploader: "UpChunk", entrypoint: link}, socket}
end
Finally, on the client-side, we use UpChunk to create an
upload from the temporary URL generated on the server and
attach listeners for its events to the entry's callbacks:
import * as UpChunk from "@mux/upchunk"

let Uploaders = {}

Uploaders.UpChunk = function(entries, onViewError){
 entries.forEach(entry => {
 // create the upload session with UpChunk
 let { file, meta: { entrypoint } } = entry
 let upload = UpChunk.createUpload({ endpoint: entrypoint, file })

 // stop uploading in the event of a view error
 onViewError(() => upload.pause())

 // upload error triggers LiveView error
 upload.on("error", (e) => entry.error(e.detail.message))

 // notify progress events to LiveView
 upload.on("progress", (e) => {
 if(e.detail < 100){ entry.progress(e.detail) }
 })

 // success completes the UploadEntry
 upload.on("success", () => entry.progress(100))
 })
}

// Don't forget to assign Uploaders to the liveSocket
let liveSocket = new LiveSocket("/live", Socket, {
 uploaders: Uploaders,
 params: {_csrf_token: csrfToken}
})
Direct to S3
In order to enforce all of your file constraints when
uploading to S3, it is necessary to perform a multipart form
POST with your file data.
This guide assumes an existing S3 bucket with the correct CORS configuration
which allows uploading directly to the bucket.
An example CORS config is:
[
 {
 "AllowedHeaders": ["*"],
 "AllowedMethods": ["PUT", "POST"],
 "AllowedOrigins": [your_domain_or_*_here],
 "ExposeHeaders": []
 }
]
More information on configuring CORS for S3 buckets is available at:
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ManageCorsUsing.html
The following example uses a zero-dependency module
called SimpleS3Upload
written by Chris McCord to generate pre-signed URLs for S3.

def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: :any, max_entries: 3, external: &presign_upload/2)}
end

defp presign_upload(entry, socket) do
 uploads = socket.assigns.uploads
 bucket = "phx-upload-example"
 key = "public/#{entry.client_name}"

 config = %{
 region: "us-east-1",
 access_key_id: System.fetch_env!("AWS_ACCESS_KEY_ID"),
 secret_access_key: System.fetch_env!("AWS_SECRET_ACCESS_KEY")
 }

 {:ok, fields} =
 SimpleS3Upload.sign_form_upload(config, bucket,
 key: key,
 content_type: entry.client_type,
 max_file_size: uploads[entry.upload_config].max_file_size,
 expires_in: :timer.hours(1)
)

 meta = %{uploader: "S3", key: key, url: "http://#{bucket}.s3-#{config.region}.amazonaws.com", fields: fields}
 {:ok, meta, socket}
end
Here, we implemented a presign_upload/2 function, which we
passed as a captured anonymous function to :external. Next,
we generate a pre-signed URL for the upload. Lastly, we return
our :ok result, with a payload of metadata for the client,
along with our unchanged socket. The metadata must contain
the :uploader key, specifying the name of the JavaScript
client-side uploader, in this case "S3".
To complete the flow, we can implement our S3 client
uploader and tell the LiveSocket where to find it:
let Uploaders = {}

Uploaders.S3 = function(entries, onViewError){
 entries.forEach(entry => {
 let formData = new FormData()
 let {url, fields} = entry.meta
 Object.entries(fields).forEach(([key, val]) => formData.append(key, val))
 formData.append("file", entry.file)
 let xhr = new XMLHttpRequest()
 onViewError(() => xhr.abort())
 xhr.onload = () => xhr.status === 204 ? entry.progress(100) : entry.error()
 xhr.onerror = () => entry.error()
 xhr.upload.addEventListener("progress", (event) => {
 if(event.lengthComputable){
 let percent = Math.round((event.loaded / event.total) * 100)
 if(percent < 100){ entry.progress(percent) }
 }
 })

 xhr.open("POST", url, true)
 xhr.send(formData)
 })
}

let liveSocket = new LiveSocket("/live", Socket, {
 uploaders: Uploaders,
 params: {_csrf_token: csrfToken}
})
We define an Uploaders.S3 function, which receives our entries. It then
performs an AJAX request for each entry, using the entry.progress() and
entry.error(). functions to report upload events back to the LiveView.
Lastly, we pass the uploaders namespace to the LiveSocket constructor
to tell phoenix where to find the uploaders returned within the external
metadata.

 Phoenix.Component - Phoenix LiveView v0.19.3

Phoenix.Component

Define reusable function components with HEEx templates.
A function component is any function that receives an assigns
map as an argument and returns a rendered struct built with
the ~H sigil:
defmodule MyComponent do
 use Phoenix.Component

 def greet(assigns) do
 ~H"""
 <p>Hello, <%= @name %>!</p>
 """
 end
end
This function uses the ~H sigil to return a rendered template.
~H stands for HEEx (HTML + EEx). HEEx is a template language for
writing HTML mixed with Elixir interpolation. We can write Elixir
code inside HEEx using <%= ... %> tags and we use @name to
access the key name defined inside assigns.
When invoked within a ~H sigil or HEEx template file:
<MyComponent.greet name="Jane" />
The following HTML is rendered:
<p>Hello, Jane!</p>
If the function component is defined locally, or its module is imported,
then the caller can invoke the function directly without specifying the module:
<.greet name="Jane" />
For dynamic values, you can interpolate Elixir expressions into a function component:
<.greet name={@user.name} />
Function components can also accept blocks of HEEx content (more on this later):
<.card>
 <p>This is the body of my card!</p>
</.card>
In this module we will learn how to build rich and composable components to
use in our applications.
Attributes
Phoenix.Component provides the attr/3 macro to declare what attributes the proceeding function
component expects to receive when invoked:
attr :name, :string, required: true

def greet(assigns) do
 ~H"""
 <p>Hello, <%= @name %>!</p>
 """
end
By calling attr/3, it is now clear that greet/1 requires a string attribute called name
present in its assigns map to properly render. Failing to do so will result in a compilation
warning:
<MyComponent.greet />
 <!-- warning: missing required attribute "name" for component MyAppWeb.MyComponent.greet/1
 lib/app_web/my_component.ex:15 -->
Attributes can provide default values that are automatically merged into the assigns map:
attr :name, :string, default: "Bob"
Now you can invoke the function component without providing a value for name:
<.greet />
Rendering the following HTML:
<p>Hello, Bob!</p>
Accessing an attribute which is required and does not have a default value will fail.
You must explicitly declare default: nil or assign a value programmatically with the
assign_new/3 function.
Multiple attributes can be declared for the same function component:
attr :name, :string, required: true
attr :age, :integer, required: true

def celebrate(assigns) do
 ~H"""
 <p>
 Happy birthday <%= @name %>!
 You are <%= @age %> years old.
 </p>
 """
end
Allowing the caller to pass multiple values:
<.celebrate name={"Genevieve"} age={34} />
Rendering the following HTML:
<p>
 Happy birthday Genevieve!
 You are 34 years old.
</p>
Multiple function components can be defined in the same module, with different attributes. In the
following example, <Components.greet/> requires a name, but does not require a title, and
<Component.heading> requires a title, but does not require a name.
defmodule Components do
 use Phoenix.Component

 attr :title, :string, required: true

 def heading(assigns) do
 ~H"""
 <h1><%= @title %></h1>
 """
 end

 attr :name, :string, required: true

 def greet(assigns) do
 ~H"""
 <p>Hello <%= @name %></p>
 """
 end
end
With the attr/3 macro you have the core ingredients to create reusable function components.
But what if you need your function components to support dynamic attributes, such as common HTML
attributes to mix into a component's container?
Global attributes
Global attributes are a set of attributes that a function component can accept when it
declares an attribute of type :global. By default, the set of attributes accepted are those
attributes common to all standard HTML tags.
See Global attributes
for a complete list of attributes.
Once a global attribute is declared, any number of attributes in the set can be passed by
the caller without having to modify the function component itself.
Below is an example of a function component that accepts a dynamic number of global attributes:
attr :message, :string, required: true
attr :rest, :global

def notification(assigns) do
 ~H"""
 <%= @message %>
 """
end
The caller can pass multiple global attributes (such as phx-* bindings or the class attribute):
<.notification message="You've got mail!" class="bg-green-200" phx-click="close" />
Rendering the following HTML:
You've got mail!
Note that the function component did not have to explicitly declare a class or phx-click
attribute in order to render.
Global attributes can define defaults which are merged with attributes provided by the caller.
For example, you may declare a default class if the caller does not provide one:
attr :rest, :global, default: %{class: "bg-blue-200"}
Now you can call the function component without a class attribute:
<.notification message="You've got mail!" phx-click="close" />
Rendering the following HTML:
You've got mail!
Note that the global attribute cannot be provided directly and doing so will emit
a warning. In other words, this is invalid:
<.notification message="You've got mail!" rest={%{"phx-click" => "close"}} />
Included globals
You may also specify which attributes are included in addition to the known globals
with the :include option. For example to support the form attribute on a button
component:
<.button form="my-form"/>
attr :rest, :global, include: ~w(form)
slot :inner_block
def button(assigns) do
 ~H"""
 <button {@rest}><%= render_slot(@inner_block) %></button>
 """
end
The :include option is useful to apply global additions on a case-by-case basis,
but sometimes you want to extend existing components with new global attributes,
such as Alpine.js' x- prefixes, which we'll outline next.
Custom global attribute prefixes
You can extend the set of global attributes by providing a list of attribute prefixes to
use Phoenix.Component. Like the default attributes common to all HTML elements,
any number of attributes that start with a global prefix will be accepted by function
components invoked by the current module. By default, the following prefixes are supported:
phx-, aria-, and data-. For example, to support the x- prefix used by
Alpine.js, you can pass the :global_prefixes option to
use Phoenix.Component:
use Phoenix.Component, global_prefixes: ~w(x-)
In your Phoenix application, this is typically done in your
lib/my_app_web.ex file, inside the def html definition:
def html do
 quote do
 use Phoenix.Component, global_prefixes: ~w(x-)
 # ...
 end
end
Now all function components invoked by this module will accept any number of attributes
prefixed with x-, in addition to the default global prefixes.
You can learn more about attributes by reading the documentation for attr/3.
Slots
In addition to attributes, function components can accept blocks of HEEx content, referred to
as slots. Slots enable further customization of the rendered HTML, as the caller can pass the
function component HEEx content they want the component to render. Phoenix.Component provides
the slot/3 macro used to declare slots for function components:
slot :inner_block, required: true

def button(assigns) do
 ~H"""
 <button>
 <%= render_slot(@inner_block) %>
 </button>
 """
end
The expression render_slot(@inner_block) renders the HEEx content. You can invoke this function
component like so:
<.button>
 This renders inside the button!
</.button>
Which renders the following HTML:
<button>
 This renders inside the button!
</button>
Like the attr/3 macro, using the slot/3 macro will provide compile-time validations.
For example, invoking button/1 without a slot of HEEx content will result in a compilation
warning being emitted:
<.button />
 <!-- warning: missing required slot "inner_block" for component MyAppWeb.MyComponent.button/1
 lib/app_web/my_component.ex:15 -->
The default slot
The example above uses the default slot, accessible as an assign named @inner_block, to render
HEEx content via the render_slot/2 function.
If the values rendered in the slot need to be dynamic, you can pass a second value back to the
HEEx content by calling render_slot/2:
slot :inner_block, required: true

attr :entries, :list, default: []

def unordered_list(assigns) do
 ~H"""

 <%= for entry <- @entries do %>
 <%= render_slot(@inner_block, entry) %>
 <% end %>

 """
end
When invoking the function component, you can use the special attribute :let to take the value
that the function component passes back and bind it to a variable:
<.unordered_list :let={fruit} entries={~w(apples bananas cherries)}>
 I like <%= fruit %>!
</.unordered_list>
Rendering the following HTML:

 I like apples!
 I like bananas!
 I like cherries!

Now the separation of concerns is maintained: the caller can specify multiple values in a list
attribute without having to specify the HEEx content that surrounds and separates them.
Named slots
In addition to the default slot, function components can accept multiple, named slots of HEEx
content. For example, imagine you want to create a modal that has a header, body, and footer:
slot :header
slot :inner_block, required: true
slot :footer, required: true

def modal(assigns) do
 ~H"""
 <div class="modal">
 <div class="modal-header">
 <%= render_slot(@header) || "Modal" %>
 </div>
 <div class="modal-body">
 <%= render_slot(@inner_block) %>
 </div>
 <div class="modal-footer">
 <%= render_slot(@footer) %>
 </div>
 </div>
 """
end
You can invoke this function component using the named slot HEEx syntax:
<.modal>
 This is the body, everything not in a named slot is rendered in the default slot.
 <:footer>
 This is the bottom of the modal.
 </:footer>
</.modal>
Rendering the following HTML:
<div class="modal">
 <div class="modal-header">
 Modal.
 </div>
 <div class="modal-body">
 This is the body, everything not in a named slot is rendered in the default slot.
 </div>
 <div class="modal-footer">
 This is the bottom of the modal.
 </div>
</div>
As shown in the example above, render_slot/1 returns nil when an optional slot
is declared and none is given. This can be used to attach default behaviour.
Slot attributes
Unlike the default slot, it is possible to pass a named slot multiple pieces of HEEx content.
Named slots can also accept attributes, defined by passing a block to the slot/3 macro.
If multiple pieces of content are passed, render_slot/2 will merge and render all the values.
Below is a table component illustrating multiple named slots with attributes:
slot :column, doc: "Columns with column labels" do
 attr :label, :string, required: true, doc: "Column label"
end

attr :rows, :list, default: []

def table(assigns) do
 ~H"""
 <table>
 <tr>
 <%= for col <- @column do %>
 <th><%= col.label %></th>
 <% end %>
 </tr>
 <%= for row <- @rows do %>
 <tr>
 <%= for col <- @column do %>
 <td><%= render_slot(col, row) %></td>
 <% end %>
 </tr>
 <% end %>
 </table>
 """
end
You can invoke this function component like so:
<.table rows={[%{name: "Jane", age: "34"}, %{name: "Bob", age: "51"}]}>
 <:column :let={user} label="Name">
 <%= user.name %>
 </:column>
 <:column :let={user} label="Age">
 <%= user.age %>
 </:column>
</.table>
Rendering the following HTML:
<table>
 <tr>
 <th>Name</th>
 <th>Age</th>
 </tr>
 <tr>
 <td>Jane</td>
 <td>34</td>
 </tr>
 <tr>
 <td>Bob</td>
 <td>51</td>
 </tr>
</table>
You can learn more about slots and the slot/3 macro in its documentation.
Embedding external template files
The embed_templates/1 macro can be used to embed .html.heex files
as function components. The directory path is based on the current
module (__DIR__), and a wildcard pattern may be used to select all
files within a directory tree. For example, imagine a directory listing:
├── components.ex
├── cards
│ ├── pricing_card.html.heex
│ └── features_card.html.heex
Then you can embed the page templates in your components.ex module
and call them like any other function component:
defmodule MyAppWeb.Components do
 use Phoenix.Component

 embed_templates "cards/*"

 def landing_hero(assigns) do
 ~H"""
 <.pricing_card />
 <.features_card />
 """
 end
end
See embed_templates/1 for more information, including declarative
assigns support for embedded templates.

 Anchor for this section

 Summary

 Components

 dynamic_tag(assigns)

 Generates a dynamically named HTML tag.

 focus_wrap(assigns)

 Wraps tab focus around a container for accessibility.

 form(assigns)

 Renders a form.

 inputs_for(assigns)

 Renders nested form inputs for associations or embeds.

 intersperse(assigns)

 Intersperses separator slot between an enumerable.

 link(assigns)

 Generates a link for live and href navigation.

 live_component(assigns)

 A function component for rendering Phoenix.LiveComponent within a parent LiveView.

 live_file_input(assigns)

 Builds a file input tag for a LiveView upload.

 live_img_preview(assigns)

 Generates an image preview on the client for a selected file.

 live_title(assigns)

 Renders a title with automatic prefix/suffix on @page_title updates.

 Macros

 attr(name, type, opts \\ [])

 Declares attributes for a HEEx function components.

 embed_templates(pattern, opts \\ [])

 Embeds external template files into the module as function components.

 sigil_H(arg, list)

 The ~H sigil for writing HEEx templates inside source files.

 slot(name, opts \\ [])

 Declares a slot. See slot/3 for more information.

 slot(name, opts, block)

 Declares a function component slot.

 Functions

 assign(socket_or_assigns, keyword_or_map)

 Adds key-value pairs to assigns.

 assign(socket_or_assigns, key, value)

 Adds a key-value pair to socket_or_assigns.

 assign_new(socket_or_assigns, key, fun)

 Assigns the given key with value from fun into socket_or_assigns if one does not yet exist.

 assigns_to_attributes(assigns, exclude \\ [])

 Filters the assigns as a list of keywords for use in dynamic tag attributes.

 changed?(socket_or_assigns, key)

 Checks if the given key changed in socket_or_assigns.

 live_flash(other, key)

 deprecated

 Returns the flash message from the LiveView flash assign.

 live_render(conn_or_socket, view, opts \\ [])

 Renders a LiveView within a template.

 render_slot(slot, argument \\ nil)

 Renders a slot entry with the given optional argument.

 to_form(data_or_params, options \\ [])

 Converts a given data structure to a Phoenix.HTML.Form
according to Phoenix.HTML.FormData.

 update(socket_or_assigns, key, fun)

 Updates an existing key with fun in the given socket_or_assigns.

 upload_errors(conf)

 Returns the errors for an upload.

 upload_errors(conf, entry)

 Returns the entry errors for an upload.

 Anchor for this section

Components

 Link to this function

 dynamic_tag(assigns)

 View Source

Generates a dynamically named HTML tag.
Raises an ArgumentError if the tag name is found to be unsafe HTML.

 attributes

 Attributes

	name (:string) (required) - The name of the tag, such as div.
	Global attributes are accepted.

 slots

 Slots

	inner_block

 examples

 Examples

<.dynamic_tag name="input" type="text"/>
<input type="text"/>
<.dynamic_tag name="p">content</.dynamic_tag>
<p>content</p>

 Link to this function

 focus_wrap(assigns)

 View Source

Wraps tab focus around a container for accessibility.
This is an essential accessibility feature for interfaces such as modals, dialogs, and menus.

 attributes

 Attributes

	id (:string) (required) - The DOM identifier of the container tag.
	Global attributes are accepted.

 slots

 Slots

	inner_block (required) - The content rendered inside of the container tag.

 examples

 Examples

Simply render your inner content within this component and focus will be wrapped around the
container as the user tabs through the containers content:
<.focus_wrap id="my-modal" class="bg-white">
 <div id="modal-content">
 Are you sure?
 <button phx-click="cancel">Cancel</button>
 <button phx-click="confirm">OK</button>
 </div>
</.focus_wrap>

 Link to this function

 form(assigns)

 View Source

Renders a form.
This function receives a form struct, generally created with to_form/2,
and generates the relevant form tags. It can be used either inside LiveView
or outside.

 examples-inside-liveview

 Examples: inside LiveView

Inside LiveViews, the for={...} attribute is generally a form struct
created with the to_form/1 function. to_form/1 expects either a map
or an Ecto.Changeset
as the source of data.
For example, you may use the parameters received in a
Phoenix.LiveView.handle_event/3 callback to create an Ecto changeset
and then use to_form/1 to convert it to a form. Then, in your templates,
you pass the @form as argument to :for:
<.form
 for={@form}
 phx-change="change_name"
>
 <.input field={@form[:email]} />
</.form>
The .input component is generally defined as part of your own application
and adds all styling necessary:
def input(assigns) do
 ~H"""
 <input type="text" name={@field.name} id={@field.id} value={@field.value} class="..." />
 """
end
A form accepts multiple options. For example, if you are doing file uploads
and you want to capture submissions, you might write instead:
<.form
 for={@form}
 multipart
 phx-change="change_user"
 phx-submit="save_user"
>
 ...
 <input type="submit" value="Save" />
</.form>
Notice how both examples use phx-change. The LiveView must implement the
phx-change event and store the input values as they arrive on change.
This is important because, if an unrelated change happens on the page,
LiveView should re-render the inputs with their updated values. Without phx-change,
the inputs would otherwise be cleared. Alternatively, you can use phx-update="ignore"
on the form to discard any updates.

 using-the-for-attribute

 Using the for attribute

The for attribute can also be a map or an Ecto.Changeset. In such cases,
a form will be created on the fly, and you can capture it using :let:
<.form
 :let={form}
 for={@changeset}
 phx-change="change_user"
>
However, such approach is discouraged in LiveView for two reasons:
	LiveView can better optimize your code if you access the form fields
using @form[:field] rather than through the let-variable form

	Ecto changesets are meant to be single use. By never storing the changeset
in the assign, you will be less tempted to use it across operations

 a-note-on-errors

 A note on :errors

Even if changeset.errors is non-empty, errors will not be displayed in a
form if the changeset
:action
is nil or :ignore.
This is useful for things like validation hints on form fields, e.g. an empty
changeset for a new form. That changeset isn't valid, but we don't want to
show errors until an actual user action has been performed.
For example, if the user submits and a Repo.insert/1 is called and fails on
changeset validation, the action will be set to :insert to show that an
insert was attempted, and the presence of that action will cause errors to be
displayed. The same is true for Repo.update/delete.
If you want to show errors manually you can also set the action yourself,
either directly on the Ecto.Changeset struct field or by using
Ecto.Changeset.apply_action/2. Since the action can be arbitrary, you can
set it to :validate or anything else to avoid giving the impression that a
database operation has actually been attempted.

 example-outside-liveview-regular-http-requests

 Example: outside LiveView (regular HTTP requests)

The form component can still be used to submit forms outside of LiveView.
In such cases, the action attribute MUST be given. Without said attribute,
the form method and csrf token are discarded.
<.form :let={f} for={@changeset} action={Routes.comment_path(:create, @comment)}>
 <.input field={f[:body]} />
</.form>
In the example above, we passed a changeset to for and captured
the value using :let={f}. This approach is ok outside of LiveViews,
as there are no change tracking optimizations to consider.

 csrf-protection

 CSRF protection

CSRF protection is a mechanism to ensure that the user who rendered
the form is the one actually submitting it. This module generates a
CSRF token by default. Your application should check this token on
the server to avoid attackers from making requests on your server on
behalf of other users. Phoenix by default checks this token.
When posting a form with a host in its address, such as "//host.com/path"
instead of only "/path", Phoenix will include the host signature in the
token and validate the token only if the accessed host is the same as
the host in the token. This is to avoid tokens from leaking to third
party applications. If this behaviour is problematic, you can generate
a non-host specific token with Plug.CSRFProtection.get_csrf_token/0 and
pass it to the form generator via the :csrf_token option.

 attributes

 Attributes

	for (:any) (required) - An existing form or the form source data.

	action (:string) - The action to submit the form on.
This attribute must be given if you intend to submit the form to a URL without LiveView.

	as (:atom) - The prefix to be used in names and IDs generated by the form.
For example, setting as: :user_params means the parameters
will be nested "user_params" in your handle_event or
conn.params["user_params"] for regular HTTP requests.
If you set this option, you must capture the form with :let.

	csrf_token (:any) - A token to authenticate the validity of requests.
One is automatically generated when an action is given and the method is not get.
When set to false, no token is generated.

	errors (:list) - Use this to manually pass a keyword list of errors to the form.
This option is useful when a regular map is given as the form
source and it will make the errors available under f.errors.
If you set this option, you must capture the form with :let.

	method (:string) - The HTTP method.
It is only used if an :action is given. If the method is not get nor post,
an input tag with name _method is generated alongside the form tag.

	multipart (:boolean) - Sets enctype to multipart/form-data.
Required when uploading files.
Defaults to false.

	Global attributes are accepted.

 slots

 Slots

	inner_block (required) - The content rendered inside of the form tag.

 Link to this function

 inputs_for(assigns)

 View Source

Renders nested form inputs for associations or embeds.

 attributes

 Attributes

	field (Phoenix.HTML.FormField) (required) - A %Phoenix.HTML.Form{}/field name tuple, for example: {@form[:email]}.

	id (:string) - The id to be used in the form, defaults to the concatenation of the given
field to the parent form id.

	as (:atom) - The name to be used in the form, defaults to the concatenation of the given
field to the parent form name.

	default (:any) - The value to use if none is available.

	prepend (:list) - The values to prepend when rendering. This only applies if the field value
is a list and no parameters were sent through the form.

	append (:list) - The values to append when rendering. This only applies if the field value
is a list and no parameters were sent through the form.

	skip_hidden (:boolean) - Skip the automatic rendering of hidden fields to allow for more tight control
over the generated markup.
Defaults to false.

 slots

 Slots

	inner_block (required) - The content rendered for each nested form.

 examples

 Examples

<.form
 :let={f}
 phx-change="change_name"
>
 <.inputs_for :let={f_nested} field={f[:nested]}>
 <.input type="text" field={f_nested[:name]} />
 </.inputs_for>
</.form>

 dynamically-adding-and-removing-inputs

 Dynamically adding and removing inputs

Dynamicaly adding and removing inputs is supported by rendering
checkboxes for inserts and removals. Libraries such as Ecto, or custom param
filtering can then inspect the paramters and handle the added or removed fields.
This can be combined with Ecto.Changeset.cast/3's :sort_param and :drop_param
options. For example, imagine a parent with an :emails has_many or embeds_many
association. To cast the user input from a nested form, one simply needs to configure
the options:
schema "lists" do
 field :title, :string

 embeds_many :emails, EmailNotification, on_replace: :delete do
 field :email, :string
 field :name, :string
 end
end

def changeset(list, attrs) do
 list
 |> cast(attrs, [:title])
 |> cast_embed(:emails,
 with: &email_changeset/2,
 sort_param: :emails_sort,
 drop_param: :emails_drop
)
end
Here we see the :sort_param and :drop_param options in action.
*Note: on_replace: :delete on the has_many and embeds_many is required when using
these options.
When Ecto sees the specified sort or drop parameter from the form, it will sort
the children based on the order they appear in the form, add new children it hasn't
seen, or drop children if the parameter intructs it to do so.
The markup for such a schema and association would look like this:
<.inputs_for :let={ef} field={@form[:emails]}>
 <input type="hidden" name="list[emails_sort][]" value={ef.index} />
 <.input type="text" field={ef[:email]} placeholder="email" />
 <.input type="text" field={ef[:name]} placeholder="name" />
 <label>
 <input type="checkbox" name="list[emails_drop][]" value={ef.index} class="hidden" />
 <.icon name="hero-x-mark" class="w-6 h-6 relative top-2" />
 </label>
</.inputs_for>

<label class="block cursor-pointer">
 <input type="checkbox" name="list[emails_sort][]" class="hidden" />
 add more
</label>

<input type="hidden" name="list[emails_drop][]" />
We used inputs_for to render inputs for the :emails association, which
containes an email address and name input for each child. Within the nested inputs,
we render a hidden list[emails_sort][] input, which is set to the index of the
given child. This tells Ecto's cast operation how to sort existing children, or
where to insert new children. Next, we render the email and name inputs as usual.
Then we render a label containing the "delete" text and a hidden checkbox input
with the name list[emails_drop][], containing the index of the child as its value.
Like before, this tells Ecto to delete the child at this index when the checkbox is
checked. Wrapping the checkbox and textual content in a label makes any clicked content
within the label check and uncheck the checbox.
Finally, outside the inputs_for, we render another label with a value-less
list[emails_sort][] checkbox witih accompanied "add more" text. Ecto will
treat unknown sort params as new children and build a new child. We also render an
empty list[emails_drop][] to ensure that all children are deleted when saving our
form in the event that the user dropped all the inputs.

 Link to this function

 intersperse(assigns)

 View Source

Intersperses separator slot between an enumerable.
Useful when you need to add a separator between items such as when
rendering breadcrumbs for navigation. Provides each item to the
inner block.

 examples

 Examples

<.intersperse :let={item} enum={["home", "profile", "settings"]}>
 <:separator>
 |
 </:separator>
 <%= item %>
</.intersperse>
Renders the following markup:
home | profile | settings

 attributes

 Attributes

	enum (:any) (required) - the enumerable to intersperse with separators.

 slots

 Slots

	inner_block (required) - the inner_block to render for each item.
	separator (required) - the slot for the separator.

 Link to this function

 link(assigns)

 View Source

Generates a link for live and href navigation.

 attributes

 Attributes

	navigate (:string) - Navigates from a LiveView to a new LiveView.
The browser page is kept, but a new LiveView process is mounted and its content on the page
is reloaded. It is only possible to navigate between LiveViews declared under the same router
Phoenix.LiveView.Router.live_session/3. Otherwise, a full browser redirect is used.

	patch (:string) - Patches the current LiveView.
The handle_params callback of the current LiveView will be invoked and the minimum content
will be sent over the wire, as any other LiveView diff.

	href (:any) - Uses traditional browser navigation to the new location.
This means the whole page is reloaded on the browser.

	replace (:boolean) - When using :patch or :navigate,
should the browser's history be replaced with pushState?
Defaults to false.

	method (:string) - The HTTP method to use with the link. This is intended for usage outside of LiveView
and therefore only works with the href={...} attribute. It has no effect on patch
and navigate instructions.
In case the method is not get, the link is generated inside the form which sets the proper
information. In order to submit the form, JavaScript must be enabled in the browser.
Defaults to "get".

	csrf_token (:any) - A boolean or custom token to use for links with an HTTP method other than get. Defaults to true.

	Global attributes are accepted.

 slots

 Slots

	inner_block (required) - The content rendered inside of the a tag.

 examples

 Examples

<.link href="/">Regular anchor link</.link>
<.link navigate={~p"/"} class="underline">home</.link>
<.link navigate={~p"/?sort=asc"} replace={false}>
 Sort By Price
</.link>
<.link patch={~p"/details"}>view details</.link>
<.link href={URI.parse("https://elixir-lang.org")}>hello</.link>
<.link href="/the_world" method="delete" data-confirm="Really?">delete</.link>

 javascript-dependency

 JavaScript dependency

In order to support links where :method is not "get" or use the above data attributes,
Phoenix.HTML relies on JavaScript. You can load priv/static/phoenix_html.js into your
build tool.

 data-attributes

 Data attributes

Data attributes are added as a keyword list passed to the data key. The following data
attributes are supported:
	data-confirm - shows a confirmation prompt before generating and submitting the form when
:method is not "get".

 overriding-the-default-confirm-behaviour

 Overriding the default confirm behaviour

phoenix_html.js does trigger a custom event phoenix.link.click on the clicked DOM element
when a click happened. This allows you to intercept the event on its way bubbling up
to window and do your own custom logic to enhance or replace how the data-confirm
attribute is handled. You could for example replace the browsers confirm() behavior with
a custom javascript implementation:
// listen on document.body, so it's executed before the default of
// phoenix_html, which is listening on the window object
document.body.addEventListener('phoenix.link.click', function (e) {
 // Prevent default implementation
 e.stopPropagation();
 // Introduce alternative implementation
 var message = e.target.getAttribute("data-confirm");
 if(!message){ return true; }
 vex.dialog.confirm({
 message: message,
 callback: function (value) {
 if (value == false) { e.preventDefault(); }
 }
 })
}, false);
Or you could attach your own custom behavior.
window.addEventListener('phoenix.link.click', function (e) {
 // Introduce custom behaviour
 var message = e.target.getAttribute("data-prompt");
 var answer = e.target.getAttribute("data-prompt-answer");
 if(message && answer && (answer != window.prompt(message))) {
 e.preventDefault();
 }
}, false);
The latter could also be bound to any click event, but this way you can be sure your custom
code is only executed when the code of phoenix_html.js is run.

 csrf-protection

 CSRF Protection

By default, CSRF tokens are generated through Plug.CSRFProtection.

 Link to this function

 live_component(assigns)

 View Source

A function component for rendering Phoenix.LiveComponent within a parent LiveView.
While LiveViews can be nested, each LiveView starts its own process. A LiveComponent provides
similar functionality to LiveView, except they run in the same process as the LiveView,
with its own encapsulated state. That's why they are called stateful components.

 attributes

 Attributes

	id (:string) (required) - A unique identifier for the LiveComponent. Note the id won't
necessarily be used as the DOM id. That is up to the component to decide.

	module (:atom) (required) - The LiveComponent module to render.

Any additional attributes provided will be passed to the LiveComponent as a map of assigns.
See Phoenix.LiveComponent for more information.

 examples

 Examples

<.live_component module={MyApp.WeatherComponent} id="thermostat" city="Kraków" />

 Link to this function

 live_file_input(assigns)

 View Source

Builds a file input tag for a LiveView upload.

 attributes

 Attributes

	upload (Phoenix.LiveView.UploadConfig) (required) - The Phoenix.LiveView.UploadConfig struct.
	accept (:string) - the optional override for the accept attribute. Defaults to :accept specified by allow_upload.
	Global attributes are accepted.

 drag-and-drop

 Drag and Drop

Drag and drop is supported by annotating the droppable container with a phx-drop-target
attribute pointing to the UploadConfig ref, so the following markup is all that is required
for drag and drop support:
<div class="container" phx-drop-target={@uploads.avatar.ref}>
 <!-- ... -->
 <.live_file_input upload={@uploads.avatar} />
</div>

 examples

 Examples

Rendering a file input:
<.live_file_input upload={@uploads.avatar} />
Rendering a file input with a label:
<label for={@uploads.avatar.ref}>Avatar</label>
<.live_file_input upload={@uploads.avatar} />

 Link to this function

 live_img_preview(assigns)

 View Source

Generates an image preview on the client for a selected file.

 attributes

 Attributes

	entry (Phoenix.LiveView.UploadEntry) (required) - The Phoenix.LiveView.UploadEntry struct.
	Global attributes are accepted.

 examples

 Examples

<%= for entry <- @uploads.avatar.entries do %>
 <.live_img_preview entry={entry} width="75" />
<% end %>

 Link to this function

 live_title(assigns)

 View Source

Renders a title with automatic prefix/suffix on @page_title updates.

 attributes

 Attributes

	prefix (:string) - A prefix added before the content of inner_block. Defaults to nil.
	suffix (:string) - A suffix added after the content of inner_block. Defaults to nil.

 slots

 Slots

	inner_block (required) - Content rendered inside the title tag.

 examples

 Examples

<.live_title prefix="MyApp – ">
 <%= assigns[:page_title] || "Welcome" %>
</.live_title>
<.live_title suffix="- MyApp">
 <%= assigns[:page_title] || "Welcome" %>
</.live_title>

 Anchor for this section

Macros

 Link to this macro

 attr(name, type, opts \\ [])

 View Source

 (macro)

Declares attributes for a HEEx function components.

 arguments

 Arguments

	name - an atom defining the name of the attribute. Note that attributes cannot define the
same name as any other attributes or slots declared for the same component.

	type - an atom defining the type of the attribute.

	opts - a keyword list of options. Defaults to [].

 types

 Types

An attribute is declared by its name, type, and options. The following types are supported:
	Name	Description
	:any	any term
	:string	any binary string
	:atom	any atom (including true, false, and nil)
	:boolean	any boolean
	:integer	any integer
	:float	any float
	:list	any list of any arbitrary types
	:map	any map of any arbitrary types
	:global	any common HTML attributes, plus those defined by :global_prefixes
	A struct module	any module that defines a struct with defstruct/1

 options

 Options

	:required - marks an attribute as required. If a caller does not pass the given attribute,
a compile warning is issued.

	:default - the default value for the attribute if not provided. If this option is
not set and the attribute is not given, accessing the attribute will fail unless a
value is explicitly set with assign_new/3.

	:examples - a non-exhaustive list of values accepted by the attribute, used for documentation
purposes.

	:values - an exhaustive list of values accepted by the attributes. If a caller passes a literal
not contained in this list, a compile warning is issued.

	:doc - documentation for the attribute.

 compile-time-validations

 Compile-Time Validations

LiveView performs some validation of attributes via the :phoenix_live_view compiler.
When attributes are defined, LiveView will warn at compilation time on the caller if:
	A required attribute of a component is missing.

	An unknown attribute is given.

	You specify a literal attribute (such as value="string" or value, but not value={expr})
and the type does not match. The following types currently support literal validation:
:string, :atom, :boolean, :integer, :float, :map and :list.

	You specify a literal attribute and it is not a member of the :values list.

LiveView does not perform any validation at runtime. This means the type information is mostly
used for documentation and reflection purposes.
On the side of the LiveView component itself, defining attributes provides the following quality
of life improvements:
	The default value of all attributes will be added to the assigns map upfront.

	Attribute documentation is generated for the component.

	Required struct types are annotated and emit compilation warnings. For example, if you specify
attr :user, User, required: true and then you write @user.non_valid_field in your template,
a warning will be emitted.

	Calls made to the component are tracked for reflection and validation purposes.

 documentation-generation

 Documentation Generation

Public function components that define attributes will have their attribute
types and docs injected into the function's documentation, depending on the
value of the @doc module attribute:
	if @doc is a string, the attribute docs are injected into that string. The optional
placeholder [INSERT LVATTRDOCS] can be used to specify where in the string the docs are
injected. Otherwise, the docs are appended to the end of the @doc string.

	if @doc is unspecified, the attribute docs are used as the default @doc string.

	if @doc is false, the attribute docs are omitted entirely.

The injected attribute docs are formatted as a markdown list:
	name (:type) (required) - attr docs. Defaults to :default.

By default, all attributes will have their types and docs injected into the function @doc
string. To hide a specific attribute, you can set the value of :doc to false.

 example

 Example

attr :name, :string, required: true
attr :age, :integer, required: true

def celebrate(assigns) do
 ~H"""
 <p>
 Happy birthday <%= @name %>!
 You are <%= @age %> years old.
 </p>
 """
end

 Link to this macro

 embed_templates(pattern, opts \\ [])

 View Source

 (macro)

Embeds external template files into the module as function components.

 options

 Options

	:root - The root directory to embed files. Defaults to the current
module's directory (__DIR__)
	:suffix - The string value to append to embedded function names. By
default, function names will be the name of the template file excluding
the format and engine.

A wildcard pattern may be used to select all files within a directory tree.
For example, imagine a directory listing:
├── components.ex
├── pages
│ ├── about_page.html.heex
│ └── welcome_page.html.heex
Then to embed the page templates in your components.ex module:
defmodule MyAppWeb.Components do
 use Phoenix.Component

 embed_templates "pages/*"
end
Now, your module will have an about_page/1 and welcome_page/1 function
component defined. Embedded templates also support declarative assigns
via bodyless function definitions, for example:
defmodule MyAppWeb.Components do
 use Phoenix.Component

 embed_templates "pages/*"

 attr :name, :string, required: true
 def welcome_page(assigns)

 slot :header
 def about_page(assigns)
end
Multiple invocations of embed_templates is also supported, which can be
useful if you have more than one template format. For example:
defmodule MyAppWeb.Emails do
 use Phoenix.Component

 embed_templates "emails/*.html", suffix: "_html"
 embed_templates "emails/*.text", suffix: "_text"
end
Note: this function is the same as Phoenix.Template.embed_templates/2.
It is also provided here for convenience and documentation purposes.
Therefore, if you want to embed templates for other formats, which are
not related to Phoenix.Component, prefer to
import Phoenix.Template, only: [embed_templates: 1] than this module.

 Link to this macro

 sigil_H(arg, list)

 View Source

 (macro)

The ~H sigil for writing HEEx templates inside source files.
HEEx is a HTML-aware and component-friendly extension of Elixir Embedded
language (EEx) that provides:
	Built-in handling of HTML attributes

	An HTML-like notation for injecting function components

	Compile-time validation of the structure of the template

	The ability to minimize the amount of data sent over the wire

	Out-of-the-box code formatting via mix format

 example

 Example

~H"""
<div title="My div" class={@class}>
 <p>Hello <%= @name %></p>
 <MyApp.Weather.city name="Kraków"/>
</div>
"""

 syntax

 Syntax

HEEx is built on top of Embedded Elixir (EEx). In this section, we are going to
cover the basic constructs in HEEx templates as well as its syntax extensions.

 interpolation

 Interpolation

Both HEEx and EEx templates use <%= ... %> for interpolating code inside the body
of HTML tags:
<p>Hello, <%= @name %></p>
Similarly, conditionals and other block Elixir constructs are supported:
<%= if @show_greeting? do %>
 <p>Hello, <%= @name %></p>
<% end %>
Note we don't include the equal sign = in the closing <% end %> tag
(because the closing tag does not output anything).
There is one important difference between HEEx and Elixir's builtin EEx.
HEEx uses a specific annotation for interpolating HTML tags and attributes.
Let's check it out.

 heex-extension-defining-attributes

 HEEx extension: Defining attributes

Since HEEx must parse and validate the HTML structure, code interpolation using
<%= ... %> and <% ... %> are restricted to the body (inner content) of the
HTML/component nodes and it cannot be applied within tags.
For instance, the following syntax is invalid:
<div class="<%= @class %>">
 ...
</div>
Instead do:
<div class={@class}>
 ...
</div>
You can put any Elixir expression between { ... }. For example, if you want
to set classes, where some are static and others are dynamic, you can using
string interpolation:
<div class={"btn btn-#{@type}"}>
 ...
</div>
The following attribute values have special meaning:
	true - if a value is true, the attribute is rendered with no value at all.
For example, <input required={true}> is the same as <input required>;

	false or nil - if a value is false or nil, the attribute is not rendered;

	list (only for the class attribute) - each element of the list is processed
as a different class. nil and false elements are discarded.

For multiple dynamic attributes, you can use the same notation but without
assigning the expression to any specific attribute.
<div {@dynamic_attrs}>
 ...
</div>
The expression inside {...} must be either a keyword list or a map containing
the key-value pairs representing the dynamic attributes.

 heex-extension-defining-function-components

 HEEx extension: Defining function components

Function components are stateless components implemented as pure functions
with the help of the Phoenix.Component module. They can be either local
(same module) or remote (external module).
HEEx allows invoking these function components directly in the template
using an HTML-like notation. For example, a remote function:
<MyApp.Weather.city name="Kraków"/>
A local function can be invoked with a leading dot:
<.city name="Kraków"/>
where the component could be defined as follows:
defmodule MyApp.Weather do
 use Phoenix.Component

 def city(assigns) do
 ~H"""
 The chosen city is: <%= @name %>.
 """
 end

 def country(assigns) do
 ~H"""
 The chosen country is: <%= @name %>.
 """
 end
end
It is typically best to group related functions into a single module, as
opposed to having many modules with a single render/1 function. Function
components support other important features, such as slots. You can learn
more about components in Phoenix.Component.

 heex-extension-special-attributes

 HEEx extension: special attributes

Apart from normal HTML attributes, HEEx also supports some special attributes
such as :let and :for.
:let
This is used by components and slots that want to yield a value back to the
caller. For an example, see how form/1 works:
<.form :let={f} for={@form} phx-change="validate" phx-submit="save">
 <.input field={f[:username]} type="text" />
 ...
</.form>
Notice how the variable f, defined by .form is used by your input component.
The Phoenix.Component module has detailed documentation on how to use and
implement such functionality.
:if and :for
It is a syntax sugar for <%= if .. do %> and <%= for .. do %> that can be
used in regular HTML, function components, and slots.
For example in an HTML tag:
<table id="admin-table" :if={@admin?}>
 <tr :for={user <- @users}>
 <td><%= user.name %></td>
 </tr>
<table>
The snippet above will only render the table if @admin? is true,
and generate a tr per user as you would expect from the collection.
:for can be used similarly in function components:
<.error :for={msg <- @errors} message={msg}/>
Which is equivalent to writing:
<%= for msg <- @errors do %>
 <.error message={msg} />
<% end %>
And :for in slots behaves the same way:
<.table id="my-table" rows={@users}>
 <:col :for={header <- @headers} :let={user}>
 <td><%= user[:header] %></td>
 </:col>
<table>
You can also combine :for and :if for tags, components, and slot to act as a filter:
<.error :for={msg <- @errors} :if={msg != nil} message={msg} />
Note that unlike Elixir's regular for, HEEx' :for does not support multiple
generators in one expression.

 code-formatting

 Code formatting

You can automatically format HEEx templates (.heex) and ~H sigils
using Phoenix.LiveView.HTMLFormatter. Please check that module
for more information.

 Link to this macro

 slot(name, opts \\ [])

 View Source

 (macro)

Declares a slot. See slot/3 for more information.

 Link to this macro

 slot(name, opts, block)

 View Source

 (macro)

Declares a function component slot.

 arguments

 Arguments

	name - an atom defining the name of the slot. Note that slots cannot define the same name
as any other slots or attributes declared for the same component.

	opts - a keyword list of options. Defaults to [].

	block - a code block containing calls to attr/3. Defaults to nil.

 options

 Options

	:required - marks a slot as required. If a caller does not pass a value for a required slot,
a compilation warning is emitted. Otherwise, an omitted slot will default to [].

	:doc - documentation for the slot. Any slot attributes declared
will have their documentation listed alongside the slot.

 slot-attributes

 Slot Attributes

A named slot may declare attributes by passing a block with calls to attr/3.
Unlike attributes, slot attributes cannot accept the :default option. Passing one
will result in a compile warning being issued.

 the-default-slot

 The Default Slot

The default slot can be declared by passing :inner_block as the name of the slot.
Note that the :inner_block slot declaration cannot accept a block. Passing one will
result in a compilation error.

 compile-time-validations

 Compile-Time Validations

LiveView performs some validation of slots via the :phoenix_live_view compiler.
When slots are defined, LiveView will warn at compilation time on the caller if:
	A required slot of a component is missing.

	An unknown slot is given.

	An unknown slot attribute is given.

On the side of the function component itself, defining attributes provides the following
quality of life improvements:
	Slot documentation is generated for the component.

	Calls made to the component are tracked for reflection and validation purposes.

 documentation-generation

 Documentation Generation

Public function components that define slots will have their docs injected into the function's
documentation, depending on the value of the @doc module attribute:
	if @doc is a string, the slot docs are injected into that string. The optional placeholder
[INSERT LVATTRDOCS] can be used to specify where in the string the docs are injected.
Otherwise, the docs are appended to the end of the @doc string.

	if @doc is unspecified, the slot docs are used as the default @doc string.

	if @doc is false, the slot docs are omitted entirely.

The injected slot docs are formatted as a markdown list:
	name (required) - slot docs. Accepts attributes:	name (:type) (required) - attr docs. Defaults to :default.

By default, all slots will have their docs injected into the function @doc string.
To hide a specific slot, you can set the value of :doc to false.

 example

 Example

slot :header
slot :inner_block, required: true
slot :footer

def modal(assigns) do
 ~H"""
 <div class="modal">
 <div class="modal-header">
 <%= render_slot(@header) || "Modal" %>
 </div>
 <div class="modal-body">
 <%= render_slot(@inner_block) %>
 </div>
 <div class="modal-footer">
 <%= render_slot(@footer) || submit_button() %>
 </div>
 </div>
 """
end
As shown in the example above, render_slot/1 returns nil when an optional slot is declared
and none is given. This can be used to attach default behaviour.

 Anchor for this section

Functions

 Link to this function

 assign(socket_or_assigns, keyword_or_map)

 View Source

Adds key-value pairs to assigns.
The first argument is either a LiveView socket or an assigns map from function components.
A keyword list or a map of assigns must be given as argument to be merged into existing assigns.

 examples

 Examples

iex> assign(socket, name: "Elixir", logo: "💧")
iex> assign(socket, %{name: "Elixir"})

 Link to this function

 assign(socket_or_assigns, key, value)

 View Source

Adds a key-value pair to socket_or_assigns.
The first argument is either a LiveView socket or an assigns map from function components.

 examples

 Examples

iex> assign(socket, :name, "Elixir")

 Link to this function

 assign_new(socket_or_assigns, key, fun)

 View Source

Assigns the given key with value from fun into socket_or_assigns if one does not yet exist.
The first argument is either a LiveView socket or an assigns map from function components.
This function is useful for lazily assigning values and sharing assigns.
We will cover both use cases next.

 lazy-assigns

 Lazy assigns

Imagine you have a function component that accepts a color:
<.my_component color="red" />
The color is also optional, so you can skip it:
<.my_component />
In such cases, the implementation can use assign_new to lazily
assign a color if none is given. Let's make it so it picks a random one
when none is given:
def my_component(assigns) do
 assigns = assign_new(assigns, :bg_color, fn -> Enum.random(~w(bg-red-200 bg-green-200 bg-blue-200)) end)

 ~H"""
 <div class={@bg_color}>
 Example
 </div>
 """
end

 sharing-assigns

 Sharing assigns

It is possible to share assigns between the Plug pipeline and LiveView on disconnected render
and between LiveViews when connected.

 when-disconnected

 When disconnected

When a user first accesses an application using LiveView, the LiveView is first rendered in its
disconnected state, as part of a regular HTML response. By using assign_new in the mount
callback of your LiveView, you can instruct LiveView to re-use any assigns already set in conn
during disconnected state.
Imagine you have a Plug that does:
A plug
def authenticate(conn, _opts) do
 if user_id = get_session(conn, :user_id) do
 assign(conn, :current_user, Accounts.get_user!(user_id))
 else
 send_resp(conn, :forbidden)
 end
end
You can re-use the :current_user assign in your LiveView during the initial render:
def mount(_params, %{"user_id" => user_id}, socket) do
 {:ok, assign_new(socket, :current_user, fn -> Accounts.get_user!(user_id) end)}
end
In such case conn.assigns.current_user will be used if present. If there is no such
:current_user assign or the LiveView was mounted as part of the live navigation, where no Plug
pipelines are invoked, then the anonymous function is invoked to execute the query instead.

 when-connected

 When connected

LiveView is also able to share assigns via assign_new within nested LiveView. If the parent
LiveView defines a :current_user assign and the child LiveView also uses assign_new/3 to
fetch the :current_user in its mount/3 callback, as above, the assign will be fetched from
the parent LiveView, once again avoiding additional database queries.
Note that fun also provides access to the previously assigned values:
assigns =
 assigns
 |> assign_new(:foo, fn -> "foo" end)
 |> assign_new(:bar, fn %{foo: foo} -> foo <> "bar" end)

 Link to this function

 assigns_to_attributes(assigns, exclude \\ [])

 View Source

Filters the assigns as a list of keywords for use in dynamic tag attributes.
One should prefer to use declarative assigns and :global attributes
over this function.

 examples

 Examples

Imagine the following my_link component which allows a caller
to pass a new_window assign, along with any other attributes they
would like to add to the element, such as class, data attributes, etc:
<.my_link to="/" id={@id} new_window={true} class="my-class">Home</.my_link>
We could support the dynamic attributes with the following component:
def my_link(assigns) do
 target = if assigns[:new_window], do: "_blank", else: false
 extra = assigns_to_attributes(assigns, [:new_window, :to])

 assigns =
 assigns
 |> assign(:target, target)
 |> assign(:extra, extra)

 ~H"""

 <%= render_slot(@inner_block) %>

 """
end
The above would result in the following rendered HTML:
Home
The second argument (optional) to assigns_to_attributes is a list of keys to
exclude. It typically includes reserved keys by the component itself, which either
do not belong in the markup, or are already handled explicitly by the component.

 Link to this function

 changed?(socket_or_assigns, key)

 View Source

Checks if the given key changed in socket_or_assigns.
The first argument is either a LiveView socket or an assigns map from function components.

 examples

 Examples

iex> changed?(socket, :count)

 Link to this function

 live_flash(other, key)

 View Source

 This function is deprecated. Use Phoenix.Flash.get/2 in Phoenix v1.7+.

Returns the flash message from the LiveView flash assign.

 examples

 Examples

<p class="alert alert-info"><%= live_flash(@flash, :info) %></p>
<p class="alert alert-danger"><%= live_flash(@flash, :error) %></p>

 Link to this function

 live_render(conn_or_socket, view, opts \\ [])

 View Source

Renders a LiveView within a template.
This is useful in two situations:
	When rendering a child LiveView inside a LiveView.

	When rendering a LiveView inside a regular (non-live) controller/view.

 options

 Options

	:session - a map of binary keys with extra session data to be serialized and sent
to the client. All session data currently in the connection is automatically available
in LiveViews. You can use this option to provide extra data. Remember all session data is
serialized and sent to the client, so you should always keep the data in the session
to a minimum. For example, instead of storing a User struct, you should store the "user_id"
and load the User when the LiveView mounts.

	:container - an optional tuple for the HTML tag and DOM attributes to be used for the
LiveView container. For example: {:li, style: "color: blue;"}. By default it uses the module
definition container. See the "Containers" section below for more information.

	:id - both the DOM ID and the ID to uniquely identify a LiveView. An :id is
automatically generated when rendering root LiveViews but it is a required option when
rendering a child LiveView.

	:sticky - an optional flag to maintain the LiveView across live redirects, even if it is
nested within another LiveView. If you are rendering the sticky view within your live layout,
make sure that the sticky view itself does not use the same layout. You can do so by returning
{:ok, socket, layout: false} from mount.

 examples

 Examples

When rendering from a controller/view, you can call:
<%= live_render(@conn, MyApp.ThermostatLive) %>
Or:
<%= live_render(@conn, MyApp.ThermostatLive, session: %{"home_id" => @home.id}) %>
Within another LiveView, you must pass the :id option:
<%= live_render(@socket, MyApp.ThermostatLive, id: "thermostat") %>

 containers

 Containers

When a LiveView is rendered, its contents are wrapped in a container. By default,
the container is a div tag with a handful of LiveView specific attributes.
The container can be customized in different ways:
	You can change the default container on use Phoenix.LiveView:
use Phoenix.LiveView, container: {:tr, id: "foo-bar"}

	You can override the container tag and pass extra attributes when calling live_render
(as well as on your live call in your router):
live_render socket, MyLiveView, container: {:tr, class: "highlight"}

If you don't want the container to affect layout, you can use the CSS property
display: contents or a class that applies it, like Tailwind's .contents.

 Link to this macro

 render_slot(slot, argument \\ nil)

 View Source

 (macro)

Renders a slot entry with the given optional argument.
<%= render_slot(@inner_block, @form) %>
If the slot has no entries, nil is returned.
If multiple slot entries are defined for the same slot,render_slot/2 will automatically render
all entries, merging their contents. In case you want to use the entries' attributes, you need
to iterate over the list to access each slot individually.
For example, imagine a table component:
<.table rows={@users}>
 <:col :let={user} label="Name">
 <%= user.name %>
 </:col>

 <:col :let={user} label="Address">
 <%= user.address %>
 </:col>
</.table>
At the top level, we pass the rows as an assign and we define a :col slot for each column we
want in the table. Each column also has a label, which we are going to use in the table header.
Inside the component, you can render the table with headers, rows, and columns:
def table(assigns) do
 ~H"""
 <table>
 <tr>
 <%= for col <- @col do %>
 <th><%= col.label %></th>
 <% end %>
 </tr>
 <%= for row <- @rows do %>
 <tr>
 <%= for col <- @col do %>
 <td><%= render_slot(col, row) %></td>
 <% end %>
 </tr>
 <% end %>
 </table>
 """
end

 Link to this function

 to_form(data_or_params, options \\ [])

 View Source

Converts a given data structure to a Phoenix.HTML.Form
according to Phoenix.HTML.FormData.
This is commonly used to convert a map or an Ecto changeset
into a form to be given to the form/1 component.

 creating-a-form-from-params

 Creating a form from params

If you want to create a form based on handle_event parameters,
you could do:
def handle_event("submitted", params, socket) do
 {:noreply, assign(socket, form: to_form(params))}
end
When you pass a map to to_form/1, it assumes said map contains
the form parameters, which are expected to have string keys.
You can also specify a name to nest the parameters:
def handle_event("submitted", %{"user" => user_params}, socket) do
 {:noreply, assign(socket, form: to_form(user_params, as: :user))}
end

 creating-a-form-from-changesets

 Creating a form from changesets

When using changesets, the underlying data, form parameters, and
errors are retrieved from it. The :as option is automatically
computed too. For example, if you have a user schema:
defmodule MyApp.Users.User do
 use Ecto.Schema

 schema "..." do
 ...
 end
end
And then you create a changeset which you pass to to_form:
%MyApp.Blog.Post{}
|> Ecto.Changeset.change()
|> to_form()
In this case, once the form is submitted, the parameters will
be available under %{"post" => post_params}.

 options

 Options

	:as - the name prefix to be used in form inputs
	:id - the id prefix to be used in form inputs
	:errors - keyword list of errors (used by maps exclusively)

The underlying data may accept additional options when
converted to forms. For example, a map accepts :errors
to list errors, but such option is not accepted by
changesets. :errors a keyword of tuples in the shape
of {error_message, options_list}. Here is an example:
to_form(%{"search" => nil}, errors: [search: {"Can't be blank", []}])
If an existing Phoenix.HTML.Form struct is given, the
options above will override its existing values if given.
Then the remaining options are merged with the existing
form options.
Errors in a form are only displayed if the changeset's action
field is set (and it is not set to :ignore). Refer to
a note on :errors for more information.

 Link to this function

 update(socket_or_assigns, key, fun)

 View Source

Updates an existing key with fun in the given socket_or_assigns.
The first argument is either a LiveView socket or an assigns map from function components.
The update function receives the current key's value and returns the updated value.
Raises if the key does not exist.
The update function may also be of arity 2, in which case it receives the current key's value
as the first argument and the current assigns as the second argument.
Raises if the key does not exist.

 examples

 Examples

iex> update(socket, :count, fn count -> count + 1 end)
iex> update(socket, :count, &(&1 + 1))
iex> update(socket, :max_users_this_session, fn current_max, %{users: users} ->
...> max(current_max, length(users))
...> end)

 Link to this function

 upload_errors(conf)

 View Source

Returns the errors for an upload.
Note this function returns errors that apply to the allowed upload as a whole. For errors that
apply to a specific uploaded entry, use upload_errors/2.
The following error may be returned:
	:too_many_files - The number of selected files exceeds the :max_entries constraint

 examples

 Examples

def upload_error_to_string(:too_many_files), do: "You have selected too many files"
<div :for={err <- upload_errors(@uploads.avatar)} class="alert alert-danger">
 <%= upload_error_to_string(err) %>
</div>

 Link to this function

 upload_errors(conf, entry)

 View Source

Returns the entry errors for an upload.
The following errors may be returned:
	:too_large - The entry exceeds the :max_file_size constraint
	:not_accepted - The entry does not match the :accept MIME types
	:external_client_failure - When external upload fails

 examples

 Examples

defp upload_error_to_string(:too_large), do: "The file is too large"
defp upload_error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
defp upload_error_to_string(:external_client_failure), do: "Something went terribly wrong"
<%= for entry <- @uploads.avatar.entries do %>
 <div :for={err <- upload_errors(@uploads.avatar, entry)} class="alert alert-danger">
 <%= upload_error_to_string(err) %>
 </div>
<% end %>

 Phoenix.LiveComponent - Phoenix LiveView v0.19.3

Phoenix.LiveComponent behaviour

LiveComponents are a mechanism to compartmentalize state, markup, and
events in LiveView.
LiveComponents are defined by using Phoenix.LiveComponent and are used
by calling Phoenix.Component.live_component/1 in a parent LiveView.
They run inside the LiveView process but have their own state and
life-cycle. For this reason, they are also often called "stateful components".
This is a contrast to Phoenix.Component, also known as "function components",
which are stateless and can only compartmentalize markup.
The smallest LiveComponent only needs to define a render/1 function:
defmodule HeroComponent do
 # If you generated an app with mix phx.new --live,
 # the line below would be: use MyAppWeb, :live_component
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <div class="hero"><%= @content %></div>
 """
 end
end
A LiveComponent is rendered as:
<.live_component module={HeroComponent} id="hero" content={@content} />
You must always pass the module and id attributes. The id will be
available as an assign and it must be used to uniquely identify the
component. All other attributes will be available as assigns inside the
LiveComponent.
Life-cycle
Mount and update
Stateful components are identified by the component module and their ID.
Therefore, two stateful components with the same module and ID are treated
as the same component. We often tie the component ID to some application based ID:
<.live_component module={UserComponent} id={@user.id} user={@user} />
When live_component/1 is called,
mount/1 is called once, when the component is first added to the page. mount/1
receives the socket as argument. Then update/2 is invoked with all of the
assigns given to live_component/1.
If update/2 is not defined all assigns are simply merged into the socket.
The assigns received as the first argument of the update/2
callback will only include the new assigns passed from this function.
Pre-existing assigns may be found in socket.assigns.
After the component is updated, render/1 is called with all assigns.
On first render, we get:
mount(socket) -> update(assigns, socket) -> render(assigns)
On further rendering:
update(assigns, socket) -> render(assigns)
The given id is not automatically used as the DOM ID. If you want to set
a DOM ID, it is your responsibility to do so when rendering:
defmodule UserComponent do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <div id={"user-\#{@id}"} class="user">
 <%= @user.name %>
 </div>
 """
 end
end
Events
Stateful components can also implement the handle_event/3 callback
that works exactly the same as in LiveView. For a client event to
reach a component, the tag must be annotated with a phx-target.
If you want to send the event to yourself, you can simply use the
@myself assign, which is an internal unique reference to the
component instance:

 Say hello!

Note that @myself is not set for stateless components, as they cannot
receive events.
If you want to target another component, you can also pass an ID
or a class selector to any element inside the targeted component.
For example, if there is a UserComponent with the DOM ID of "user-13",
using a query selector, we can send an event to it with:

 Say hello!

In both cases, handle_event/3 will be called with the
"say_hello" event. When handle_event/3 is called for a component,
only the diff of the component is sent to the client, making them
extremely efficient.
Any valid query selector for phx-target is supported, provided that the
matched nodes are children of a LiveView or LiveComponent, for example
to send the close event to multiple components:

 Dismiss

Preloading and update
Stateful components also support an optional preload/1 callback.
The preload/1 callback is useful when multiple components of the
same type are rendered on the page and you want to preload or augment
their data in batches.
Once a LiveView renders a LiveComponent, the optional preload/1 and
update/2 callbacks are called before render/1.
So on first render, the following callbacks will be invoked:
preload(list_of_assigns) -> mount(socket) -> update(assigns, socket) -> render(assigns)
On subsequent renders, these callbacks will be invoked:
preload(list_of_assigns) -> update(assigns, socket) -> render(assigns)
To provide a more complete understanding of why both callbacks are necessary,
let's see an example. Imagine you are implementing a component and the component
needs to load some state from the database. For example:
<.live_component module={UserComponent} id={user_id} />
A possible implementation would be to load the user on the update/2
callback:
def update(assigns, socket) do
 user = Repo.get!(User, assigns.id)
 {:ok, assign(socket, :user, user)}
end
However, the issue with said approach is that, if you are rendering
multiple user components in the same page, you have a N+1 query problem.
The preload/1 callback helps address this problem as it is invoked
with a list of assigns for all components of the same type. For example,
instead of implementing update/2 as above, one could implement:
def preload(list_of_assigns) do
 list_of_ids = Enum.map(list_of_assigns, & &1.id)

 users =
 from(u in User, where: u.id in ^list_of_ids, select: {u.id, u})
 |> Repo.all()
 |> Map.new()

 Enum.map(list_of_assigns, fn assigns ->
 Map.put(assigns, :user, users[assigns.id])
 end)
end
Now only a single query to the database will be made. In fact, the
preloading algorithm is a breadth-first tree traversal, which means
that even for nested components, the amount of queries are kept to
a minimum.
Finally, note that preload/1 must return an updated list_of_assigns,
keeping the assigns in the same order as they were given.
Summary
All of the life-cycle events are summarized in the diagram below.
The bubble events in white are triggers that invoke the component.
In blue you have component callbacks, where the underlined names
represent required callbacks:
flowchart LR
 *((start)):::event-.->P
 WE([wait for
parent changes]):::event-.->P
 W([wait for
events]):::event-.->H

 subgraph j__transparent[" "]

 subgraph i[" "]
 direction TB
 P(preload/1):::callback-->M(mount/1)
 M(mount/1
only once):::callback-->U
 end

 U(update/2):::callback-->A

 subgraph j[" "]
 direction TB
 A --> |yes| R
 H(handle_event/3):::callback-->A{any
changes?}:::diamond
 end

 A --> |no| W

 end

 R(render/1):::callback_req-->W

 classDef event fill:#fff,color:#000,stroke:#000
 classDef diamond fill:#FFC28C,color:#000,stroke:#000
 classDef callback fill:#B7ADFF,color:#000,stroke-width:0
 classDef callback_req fill:#B7ADFF,color:#000,stroke-width:0,text-decoration:underline
Slots
LiveComponent can also receive slots, in the same way as a Phoenix.Component:
<.live_component module={MyComponent} id={@data.id} >
 <div>Inner content here</div>
</.live_component>
If the LiveComponent defines an update/2, be sure that the socket it returns
includes the :inner_block assign it received.
See the docs for Phoenix.Component for more information.
Live patches and live redirects
A template rendered inside a component can use <.link patch={...}> and
<.link navigate={...}>. Patches are always handled by the parent LiveView,
as components do not provide handle_params.
Managing state
Now that we have learned how to define and use components, as well as
how to use preload/1 as a data loading optimization, it is important
to talk about how to manage state in components.
Generally speaking, you want to avoid both the parent LiveView and the
LiveComponent working on two different copies of the state. Instead, you
should assume only one of them to be the source of truth. Let's discuss
the two different approaches in detail.
Imagine a scenario where a LiveView represents a board with each card
in it as a separate stateful LiveComponent. Each card has a form to
allow update of the card title directly in the component, as follows:
defmodule CardComponent do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <form phx-submit="..." phx-target={@myself}>
 <input name="title"><%= @card.title %></input>
 ...
 </form>
 """
 end

 ...
end
We will see how to organize the data flow to keep either the board LiveView or
the card LiveComponents as the source of truth.
LiveView as the source of truth
If the board LiveView is the source of truth, it will be responsible
for fetching all of the cards in a board. Then it will call
live_component/1
for each card, passing the card struct as argument to CardComponent:
<%= for card <- @cards do %>
 <.live_component module={CardComponent} card={card} id={card.id} board_id={@id} />
<% end %>
Now, when the user submits the form, CardComponent.handle_event/3
will be triggered. However, if the update succeeds, you must not
change the card struct inside the component. If you do so, the card
struct in the component will get out of sync with the LiveView. Since
the LiveView is the source of truth, you should instead tell the
LiveView that the card was updated.
Luckily, because the component and the view run in the same process,
sending a message from the LiveComponent to the parent LiveView is as
simple as sending a message to self():
defmodule CardComponent do
 ...
 def handle_event("update_title", %{"title" => title}, socket) do
 send self(), {:updated_card, %{socket.assigns.card | title: title}}
 {:noreply, socket}
 end
end
The LiveView then receives this event using Phoenix.LiveView.handle_info/2:
defmodule BoardView do
 ...
 def handle_info({:updated_card, card}, socket) do
 # update the list of cards in the socket
 {:noreply, updated_socket}
 end
end
Because the list of cards in the parent socket was updated, the parent
LiveView will be re-rendered, sending the updated card to the component.
So in the end, the component does get the updated card, but always
driven from the parent.
Alternatively, instead of having the component send a message directly to the
parent view, the component could broadcast the update using Phoenix.PubSub.
Such as:
defmodule CardComponent do
 ...
 def handle_event("update_title", %{"title" => title}, socket) do
 message = {:updated_card, %{socket.assigns.card | title: title}}
 Phoenix.PubSub.broadcast(MyApp.PubSub, board_topic(socket), message)
 {:noreply, socket}
 end

 defp board_topic(socket) do
 "board:" <> socket.assigns.board_id
 end
end
As long as the parent LiveView subscribes to the board:<ID> topic,
it will receive updates. The advantage of using PubSub is that we get
distributed updates out of the box. Now, if any user connected to the
board changes a card, all other users will see the change.
LiveComponent as the source of truth
If each card LiveComponent is the source of truth, then the board LiveView
must no longer fetch the card structs from the database. Instead, the board
LiveView must only fetch the card ids, then render each component only by
passing an ID:
<%= for card_id <- @card_ids do %>
 <.live_component module={CardComponent} id={card_id} board_id={@id} />
<% end %>
Now, each CardComponent will load its own card. Of course, doing so
per card could be expensive and lead to N queries, where N is the
number of cards, so we can use the preload/1 callback to make it
efficient.
Once the card components are started, they can each manage their own
card, without concerning themselves with the parent LiveView.
However, note that components do not have a Phoenix.LiveView.handle_info/2
callback. Therefore, if you want to track distributed changes on a card,
you must have the parent LiveView receive those events and redirect them
to the appropriate card. For example, assuming card updates are sent
to the "board:ID" topic, and that the board LiveView is subscribed to
said topic, one could do:
def handle_info({:updated_card, card}, socket) do
 send_update CardComponent, id: card.id, board_id: socket.assigns.id
 {:noreply, socket}
end
With Phoenix.LiveView.send_update/3, the CardComponent given by id
will be invoked, triggering both preload and update callbacks, which will
load the most up to date data from the database.
Cost of stateful components
The internal infrastructure LiveView uses to keep track of stateful
components is very lightweight. However, be aware that in order to
provide change tracking and to send diffs over the wire, all of the
components' assigns are kept in memory - exactly as it is done in
LiveViews themselves.
Therefore it is your responsibility to keep only the assigns necessary
in each component. For example, avoid passing all of LiveView's assigns
when rendering a component:
<.live_component module={MyComponent} {assigns} />
Instead pass only the keys that you need:
<.live_component module={MyComponent} user={@user} org={@org} />
Luckily, because LiveViews and LiveComponents are in the same process,
they share the data structure representations in memory. For example,
in the code above, the view and the component will share the same copies
of the @user and @org assigns.
You should also avoid using stateful components to provide abstract DOM
components. As a guideline, a good LiveComponent encapsulates
application concerns and not DOM functionality. For example, if you
have a page that shows products for sale, you can encapsulate the
rendering of each of those products in a component. This component
may have many buttons and events within it. On the opposite side,
do not write a component that is simply encapsulating generic DOM
components. For instance, do not do this:
defmodule MyButton do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <button class="css-framework-class" phx-click="click">
 <%= @text %>
 </button>
 """
 end

 def handle_event("click", _, socket) do
 _ = socket.assigns.on_click.()
 {:noreply, socket}
 end
end
Instead, it is much simpler to create a function component:
def my_button(%{text: _, click: _} = assigns) do
 ~H"""
 <button class="css-framework-class" phx-click={@click}>
 <%= @text %>
 </button>
 """
end
If you keep components mostly as an application concern with
only the necessary assigns, it is unlikely you will run into
issues related to stateful components.
Limitations
Live Components require a single HTML tag at the root
Live Components require a single HTML tag at the root. It is not possible
to have components that render only text or multiple tags.
SVG support
Given components compartmentalize markup on the server, they are also
rendered in isolation on the client, which provides great performance
benefits on the client too.
However, when rendering components on the client, the client needs to
choose the mime type of the component contents, which defaults to HTML.
This is the best default but in some cases it may lead to unexpected
results.
For example, if you are rendering SVG, the SVG will be interpreted as
HTML. This may work just fine for most components but you may run into
corner cases. For example, the <image> SVG tag may be rewritten to
the tag, since <image> is an obsolete HTML tag.
Luckily, there is a simple solution to this problem. Since SVG allows
<svg> tags to be nested, you can wrap the component content into an
<svg> tag. This will ensure that it is correctly interpreted by the
browser.

 Anchor for this section

 Summary

 Callbacks

 handle_event(event, unsigned_params, socket)

 mount(socket)

 preload(list_of_assigns)

 render(assigns)

 update(assigns, socket)

 Functions

 __using__(opts \\ [])

 Uses LiveComponent in the current module.

 Anchor for this section

Callbacks

 Link to this callback

 handle_event(event, unsigned_params, socket)

 View Source

 (optional)

 @callback handle_event(
 event :: binary(),
 unsigned_params :: Phoenix.LiveView.unsigned_params(),
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:noreply, Phoenix.LiveView.Socket.t()}
 | {:reply, map(), Phoenix.LiveView.Socket.t()}

 Link to this callback

 mount(socket)

 View Source

 (optional)

 @callback mount(socket :: Phoenix.LiveView.Socket.t()) ::
 {:ok, Phoenix.LiveView.Socket.t()}
 | {:ok, Phoenix.LiveView.Socket.t(), keyword()}

 Link to this callback

 preload(list_of_assigns)

 View Source

 (optional)

 @callback preload(list_of_assigns :: [Phoenix.LiveView.Socket.assigns()]) ::
 list_of_assigns :: [Phoenix.LiveView.Socket.assigns()]

 Link to this callback

 render(assigns)

 View Source

 @callback render(assigns :: Phoenix.LiveView.Socket.assigns()) ::
 Phoenix.LiveView.Rendered.t()

 Link to this callback

 update(assigns, socket)

 View Source

 (optional)

 @callback update(
 assigns :: Phoenix.LiveView.Socket.assigns(),
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:ok, Phoenix.LiveView.Socket.t()}

 Anchor for this section

Functions

 Link to this macro

 __using__(opts \\ [])

 View Source

 (macro)

Uses LiveComponent in the current module.
use Phoenix.LiveComponent

 options

 Options

	:global_prefixes - the global prefixes to use for components. See
Global Attributes in Phoenix.Component for more information.

 Phoenix.LiveView - Phoenix LiveView v0.19.3

Phoenix.LiveView behaviour

A LiveView is a process that receives events, updates
its state, and render updates to a page as diffs.
The LiveView programming model is declarative: instead of
saying "once event X happens, change Y on the page",
events in LiveView are regular messages which may cause
changes to its state. Once the state changes, LiveView will
re-render the relevant parts of its HTML template and push it
to the browser, which updates itself in the most efficient
manner. This means developers write LiveView templates as
any other server-rendered HTML and LiveView does the hard
work of tracking changes and sending the relevant diffs to
the browser.
LiveView state is nothing more than functional and immutable
Elixir data structures. The events are either internal application messages
(usually emitted by Phoenix.PubSub) or sent by the client/browser.
LiveView is first rendered statically as part of regular
HTTP requests, which provides quick times for "First Meaningful
Paint", in addition to helping search and indexing engines.
Then a persistent connection is established between client and
server. This allows LiveView applications to react faster to user
events as there is less work to be done and less data to be sent
compared to stateless requests that have to authenticate, decode, load,
and encode data on every request.
Life-cycle
A LiveView begins as a regular HTTP request and HTML response,
and then upgrades to a stateful view on client connect,
guaranteeing a regular HTML page even if JavaScript is disabled.
Any time a stateful view changes or updates its socket assigns, it is
automatically re-rendered and the updates are pushed to the client.
Socket assigns are stateful values kept on the server side in
Phoenix.LiveView.Socket. This is different from the common stateless
HTTP pattern of sending the connection state to the client in the form
of a token or cookie and rebuilding the state on the server to service
every request.
You begin by rendering a LiveView typically from your router.
When LiveView is first rendered, the mount/3 callback is invoked
with the current params, the current session and the LiveView socket.
As in a regular request, params contains public data that can be
modified by the user. The session always contains private data set
by the application itself. The mount/3 callback wires up socket
assigns necessary for rendering the view. After mounting, handle_params/3
is invoked so uri and query params are handled. Finally, render/1
is invoked and the HTML is sent as a regular HTML response to the
client.
After rendering the static page, LiveView connects from the client
to the server where stateful views are spawned to push rendered updates
to the browser, and receive client events via phx- bindings. Just like
the first rendering, mount/3, is invoked with params, session,
and socket state. However in the connected client case, a LiveView process
is spawned on the server, runs handle_params/3 again and then pushes
the result of render/1 to the client and continues on for the duration
of the connection. If at any point during the stateful life-cycle a crash
is encountered, or the client connection drops, the client gracefully
reconnects to the server, calling mount/3 and handle_params/3 again.
LiveView also allows attaching hooks to specific life-cycle stages with
attach_hook/4.
Example
A LiveView is a module that requires two callbacks: mount/3 and
render/1:
defmodule MyAppWeb.ThermostatLive do
 # In Phoenix v1.6+ apps, the line is typically: use MyAppWeb, :live_view
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 Current temperature: <%= @temperature %>
 """
 end

 def mount(_params, %{"current_user_id" => user_id}, socket) do
 temperature = Thermostat.get_user_reading(user_id)
 {:ok, assign(socket, :temperature, temperature)}
 end
end
The render/1 callback receives the socket.assigns and is responsible
for returning rendered content. We use the ~H sigil to define a HEEx
template, which stands for HTML+EEx. They are an extension of Elixir's
builtin EEx templates, with support for HTML validation, syntax-based
components, smart change tracking, and more. You can learn more about
the template syntax in Phoenix.Component.sigil_H/2 (note
Phoenix.Component is automatically imported when you use Phoenix.LiveView).
Next, decide where you want to use your LiveView.
You can serve the LiveView directly from your router (recommended):
defmodule MyAppWeb.Router do
 use Phoenix.Router
 import Phoenix.LiveView.Router

 scope "/", MyAppWeb do
 live "/thermostat", ThermostatLive
 end
end
Note: the above assumes there is plug :put_root_layout call
in your router that configures the LiveView layout. This call is
automatically included in Phoenix v1.6 apps and described in
the installation guide.
Alternatively, you can live_render from any template. In your view:
import Phoenix.Component
Then in your template:
<h1>Temperature Control</h1>
<%= live_render(@conn, MyAppWeb.ThermostatLive) %>
Once the LiveView is rendered, a regular HTML response is sent. In your
app.js file, you should find the following:
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})
liveSocket.connect()
After the client connects, mount/3 will be invoked inside a spawned
LiveView process. At this point, you can use connected?/1 to
conditionally perform stateful work, such as subscribing to pubsub topics,
sending messages, etc. For example, you can periodically update a LiveView
with a timer:
defmodule DemoWeb.ThermostatLive do
 use Phoenix.LiveView
 ...

 def mount(_params, %{"current_user_id" => user_id}, socket) do
 if connected?(socket), do: Process.send_after(self(), :update, 30000)

 case Thermostat.get_user_reading(user_id) do
 {:ok, temperature} ->
 {:ok, assign(socket, temperature: temperature, user_id: user_id)}

 {:error, _reason} ->
 {:ok, redirect(socket, to: "/error")}
 end
 end

 def handle_info(:update, socket) do
 Process.send_after(self(), :update, 30000)
 {:ok, temperature} = Thermostat.get_reading(socket.assigns.user_id)
 {:noreply, assign(socket, :temperature, temperature)}
 end
end
We used connected?(socket) on mount to send our view a message every 30s if
the socket is in a connected state. We receive the :update message in the
handle_info/2 callback, just like in an Elixir GenServer, and update our
socket assigns. Whenever a socket's assigns change, render/1 is automatically
invoked, and the updates are sent to the client.
Colocating templates
In the examples above, we have placed the template directly inside the
LiveView:
defmodule MyAppWeb.ThermostatLive do
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 Current temperature: <%= @temperature %>
 """
 end
For larger templates, you can place them in a file in the same directory
and same name as the LiveView. For example, if the file above is placed
at lib/my_app_web/live/thermostat_live.ex, you can also remove the
render/1 definition above and instead put the template code at
lib/my_app_web/live/thermostat_live.html.heex.
In all cases, each assign in the template will be accessible as @assign.
You can learn more about assigns and HEEx templates in their own guide.
Bindings
Phoenix supports DOM element bindings for client-server interaction. For
example, to react to a click on a button, you would render the element:
<button phx-click="inc_temperature">+</button>
Then on the server, all LiveView bindings are handled with the handle_event/3
callback, for example:
def handle_event("inc_temperature", _value, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end
To update UI state, for example, to open and close dropdowns, switch tabs,
etc, LiveView also supports JS commands (Phoenix.LiveView.JS), which
execute directly on the client without reaching the server. To learn more,
see our bindings page for a complete list of all LiveView
bindings as well as our JavaScript interoperability guide.
Compartmentalize state, markup, and events in LiveView
LiveView supports two extension mechanisms: function components, provided by
HEEx templates, and stateful components.
Function components are any function that receives an assigns map, similar
to render(assigns) in our LiveView, and returns a ~H template. For example:
def weather_greeting(assigns) do
 ~H"""
 <div title="My div" class={@class}>
 <p>Hello <%= @name %></p>
 <MyApp.Weather.city name="Kraków"/>
 </div>
 """
end
You can learn more about function components in the Phoenix.Component
module. At the end of the day, they are a useful mechanism to reuse markup
in your LiveViews.
However, sometimes you need to compartmentalize or reuse more than markup.
Perhaps you want to move part of the state or part of the events in your
LiveView to a separate module. For these cases, LiveView provides
Phoenix.LiveComponent, which are rendered using
live_component/1:
<.live_component module={UserComponent} id={user.id} user={user} />
Components have their own mount/3 and handle_event/3 callbacks, as
well as their own state with change tracking support. Components are also
lightweight as they "run" in the same process as the parent LiveView.
However, this means an error in a component would cause the whole view to
fail to render. See Phoenix.LiveComponent for a complete rundown on components.
Finally, if you want complete isolation between parts of a LiveView, you can
always render a LiveView inside another LiveView by calling
live_render/3. This child LiveView
runs in a separate process than the parent, with its own callbacks. If a child
LiveView crashes, it won't affect the parent. If the parent crashes, all children
are terminated.
When rendering a child LiveView, the :id option is required to uniquely
identify the child. A child LiveView will only ever be rendered and mounted
a single time, provided its ID remains unchanged. To force a child to re-mount
with new session data, a new ID must be provided.
Given that a LiveView runs on its own process, it is an excellent tool for creating
completely isolated UI elements, but it is a slightly expensive abstraction if
all you want is to compartmentalize markup or events (or both).
To sum it up:
	use Phoenix.Component to compartmentalize/reuse markup
	use Phoenix.LiveComponent to compartmentalize state, markup, and events
	use nested Phoenix.LiveView to compartmentalize state, markup, events, and error isolation

Endpoint configuration
LiveView accepts the following configuration in your endpoint under
the :live_view key:
	:signing_salt (required) - the salt used to sign data sent
to the client

	:hibernate_after (optional) - the idle time in milliseconds allowed in
the LiveView before compressing its own memory and state.
Defaults to 15000ms (15 seconds)

Guides
LiveView has many guides to help you on your journey.
Server-side
These guides focus on server-side functionality:
	Assigns and HEEx templates
	Error and exception handling
	Live Layouts
	Live Navigation
	Security considerations of the LiveView model
	Telemetry
	Uploads
	Using Gettext for internationalization

Client-side
These guides focus on LiveView bindings and client-side integration:
	Bindings
	Form bindings
	DOM patching and temporary assigns
	JavaScript interoperability
	Uploads (External)

 Anchor for this section

 Summary

 Types

 unsigned_params()

 Callbacks

 handle_call(msg, {}, socket)

 Invoked to handle calls from other Elixir processes.

 handle_cast(msg, socket)

 Invoked to handle casts from other Elixir processes.

 handle_event(event, unsigned_params, socket)

 Invoked to handle events sent by the client.

 handle_info(msg, socket)

 Invoked to handle messages from other Elixir processes.

 handle_params(unsigned_params, uri, socket)

 Invoked after mount and whenever there is a live patch event.

 mount(params, session, socket)

 The LiveView entry-point.

 render(assigns)

 Renders a template.

 terminate(reason, socket)

 Invoked when the LiveView is terminating.

 Functions

 __using__(opts)

 Uses LiveView in the current module to mark it a LiveView.

 allow_upload(socket, name, options)

 Allows an upload for the provided name.

 attach_hook(socket, name, stage, fun)

 Attaches the given fun by name for the lifecycle stage into socket.

 cancel_upload(socket, name, entry_ref)

 Cancels an upload for the given entry.

 clear_flash(socket)

 Clears the flash.

 clear_flash(socket, key)

 Clears a key from the flash.

 connected?(socket)

 Returns true if the socket is connected.

 consume_uploaded_entries(socket, name, func)

 Consumes the uploaded entries.

 consume_uploaded_entry(socket, entry, func)

 Consumes an individual uploaded entry.

 detach_hook(socket, name, stage)

 Detaches a hook with the given name from the lifecycle stage.

 disallow_upload(socket, name)

 Revokes a previously allowed upload from allow_upload/3.

 get_connect_info(socket)

 deprecated

 get_connect_info(socket, key)

 Accesses a given connect info key from the socket.

 get_connect_params(socket)

 Accesses the connect params sent by the client for use on connected mount.

 on_mount(mod_or_mod_arg)

 Declares a module callback to be invoked on the LiveView's mount.

 push_event(socket, event, payload)

 Pushes an event to the client.

 push_navigate(socket, opts)

 Annotates the socket for navigation to another LiveView.

 push_patch(socket, opts)

 Annotates the socket for navigation within the current LiveView.

 push_redirect(socket, opts)

 deprecated

 Annotates the socket for navigation to another LiveView.

 put_flash(socket, kind, msg)

 Adds a flash message to the socket to be displayed.

 redirect(socket, opts \\ [])

 Annotates the socket for redirect to a destination path.

 send_update(pid \\ self(), module, assigns)

 Asynchronously updates a Phoenix.LiveComponent with new assigns.

 send_update_after(pid \\ self(), module, assigns, time_in_milliseconds)

 Similar to send_update/3 but the update will be delayed according to the given time_in_milliseconds.

 static_changed?(socket)

 Returns true if the socket is connected and the tracked static assets have changed.

 stream(socket, name, items, opts \\ [])

 Assigns a new stream to the socket.

 stream_configure(socket, name, opts)

 Configures a stream.

 stream_delete(socket, name, item)

 Deletes an item from the stream.

 stream_delete_by_dom_id(socket, name, id)

 Deletes an item from the stream given its computed DOM id.

 stream_insert(socket, name, item, opts \\ [])

 Inserts a new item or updates an existing item in the stream.

 transport_pid(socket)

 Returns the transport pid of the socket.

 uploaded_entries(socket, name)

 Returns the completed and in progress entries for the upload.

 Anchor for this section

Types

 Link to this type

 unsigned_params()

 View Source

 @type unsigned_params() :: map()

 Anchor for this section

Callbacks

 Link to this callback

 handle_call(msg, {}, socket)

 View Source

 (optional)

 @callback handle_call(
 msg :: term(),
 {pid(), reference()},
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:noreply, Phoenix.LiveView.Socket.t()}
 | {:reply, term(), Phoenix.LiveView.Socket.t()}

Invoked to handle calls from other Elixir processes.
See GenServer.call/3 and GenServer.handle_call/3
for more information.

 Link to this callback

 handle_cast(msg, socket)

 View Source

 (optional)

 @callback handle_cast(msg :: term(), socket :: Phoenix.LiveView.Socket.t()) ::
 {:noreply, Phoenix.LiveView.Socket.t()}

Invoked to handle casts from other Elixir processes.
See GenServer.cast/2 and GenServer.handle_cast/2
for more information. It must always return {:noreply, socket},
where :noreply means no additional information is sent
to the process which cast the message.

 Link to this callback

 handle_event(event, unsigned_params, socket)

 View Source

 (optional)

 @callback handle_event(
 event :: binary(),
 unsigned_params(),
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:noreply, Phoenix.LiveView.Socket.t()}
 | {:reply, map(), Phoenix.LiveView.Socket.t()}

Invoked to handle events sent by the client.
It receives the event name, the event payload as a map,
and the socket.
It must return {:noreply, socket}, where :noreply means
no additional information is sent to the client, or
{:reply, map(), socket}, where the given map() is encoded
and sent as a reply to the client.

 Link to this callback

 handle_info(msg, socket)

 View Source

 (optional)

 @callback handle_info(msg :: term(), socket :: Phoenix.LiveView.Socket.t()) ::
 {:noreply, Phoenix.LiveView.Socket.t()}

Invoked to handle messages from other Elixir processes.
See Kernel.send/2 and GenServer.handle_info/2
for more information. It must always return {:noreply, socket},
where :noreply means no additional information is sent
to the process which sent the message.

 Link to this callback

 handle_params(unsigned_params, uri, socket)

 View Source

 (optional)

 @callback handle_params(
 unsigned_params(),
 uri :: String.t(),
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:noreply, Phoenix.LiveView.Socket.t()}

Invoked after mount and whenever there is a live patch event.
It receives the current params, including parameters from
the router, the current uri from the client and the socket.
It is invoked after mount or whenever there is a live navigation
event caused by push_patch/2 or <.link patch={...}>.
It must always return {:noreply, socket}, where :noreply
means no additional information is sent to the client.

 Link to this callback

 mount(params, session, socket)

 View Source

 (optional)

 @callback mount(
 params :: unsigned_params() | :not_mounted_at_router,
 session :: map(),
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:ok, Phoenix.LiveView.Socket.t()}
 | {:ok, Phoenix.LiveView.Socket.t(), keyword()}

The LiveView entry-point.
For each LiveView in the root of a template, mount/3 is invoked twice:
once to do the initial page load and again to establish the live socket.
It expects three arguments:
	params - a map of string keys which contain public information that
can be set by the user. The map contains the query params as well as any
router path parameter. If the LiveView was not mounted at the router,
this argument is the atom :not_mounted_at_router
	session - the connection session
	socket - the LiveView socket

It must return either {:ok, socket} or {:ok, socket, options}, where
options is one of:
	:temporary_assigns - a keyword list of assigns that are temporary
and must be reset to their value after every render. Note that once
the value is reset, it won't be re-rendered again until it is explicitly
assigned

	:layout - the optional layout to be used by the LiveView. Setting
this option will override any layout previously set via
Phoenix.LiveView.Router.live_session/2 or on use Phoenix.LiveView

 Link to this callback

 render(assigns)

 View Source

 @callback render(assigns :: Phoenix.LiveView.Socket.assigns()) ::
 Phoenix.LiveView.Rendered.t()

Renders a template.
This callback is invoked whenever LiveView detects
new content must be rendered and sent to the client.
If you define this function, it must return a template
defined via the Phoenix.Component.sigil_H/2.
If you don't define this function, LiveView will attempt
to render a template in the same directory as your LiveView.
For example, if you have a LiveView named MyApp.MyCustomView
inside lib/my_app/live_views/my_custom_view.ex, Phoenix
will look for a template at lib/my_app/live_views/my_custom_view.html.heex.

 Link to this callback

 terminate(reason, socket)

 View Source

 (optional)

 @callback terminate(reason, socket :: Phoenix.LiveView.Socket.t()) :: term()
when reason: :normal | :shutdown | {:shutdown, :left | :closed | term()}

Invoked when the LiveView is terminating.
In case of errors, this callback is only invoked if the LiveView
is trapping exits. See GenServer.terminate/2 for more info.

 Anchor for this section

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Uses LiveView in the current module to mark it a LiveView.
use Phoenix.LiveView,
 namespace: MyAppWeb,
 container: {:tr, class: "colorized"},
 layout: {MyAppWeb.LayoutView, :app},
 log: :info

 options

 Options

	:container - configures the container the LiveView will be wrapped in

	:global_prefixes - the global prefixes to use for components. See
Global Attributes in Phoenix.Component for more information.

	:layout - configures the layout the LiveView will be rendered in.
This layout can be overridden by on mount/3 or via the :layout
option in Phoenix.LiveView.Router.live_session/2

	:log - configures the log level for the LiveView

	:namespace - configures the namespace the LiveView is in

 Link to this function

 allow_upload(socket, name, options)

 View Source

Allows an upload for the provided name.

 options

 Options

	:accept - Required. A list of unique file type specifiers or the
atom :any to allow any kind of file. For example, [".jpeg"], :any, etc.

	:max_entries - The maximum number of selected files to allow per
file input. Defaults to 1.

	:max_file_size - The maximum file size in bytes to allow to be uploaded.
Defaults 8MB. For example, 12_000_000.

	:chunk_size - The chunk size in bytes to send when uploading.
Defaults 64_000.

	:chunk_timeout - The time in milliseconds to wait before closing the
upload channel when a new chunk has not been received. Defaults 10_000.

	:external - The 2-arity function for generating metadata for external
client uploaders. See the Uploads section for example usage.

	:progress - The optional 3-arity function for receiving progress events

	:auto_upload - Instructs the client to upload the file automatically
on file selection instead of waiting for form submits. Default false.

Raises when a previously allowed upload under the same name is still active.

 examples

 Examples

allow_upload(socket, :avatar, accept: ~w(.jpg .jpeg), max_entries: 2)
allow_upload(socket, :avatar, accept: :any)
For consuming files automatically as they are uploaded, you can pair auto_upload: true with
a custom progress function to consume the entries as they are completed. For example:
allow_upload(socket, :avatar, accept: :any, progress: &handle_progress/3, auto_upload: true)

defp handle_progress(:avatar, entry, socket) do
 if entry.done? do
 uploaded_file =
 consume_uploaded_entry(socket, entry, fn %{} = meta ->
 {:ok, ...}
 end)

 {:noreply, put_flash(socket, :info, "file #{uploaded_file.name} uploaded")}
 else
 {:noreply, socket}
 end
end

 Link to this function

 attach_hook(socket, name, stage, fun)

 View Source

Attaches the given fun by name for the lifecycle stage into socket.
Note: This function is for server-side lifecycle callbacks.
For client-side hooks, see the
JS Interop guide.

Hooks provide a mechanism to tap into key stages of the LiveView
lifecycle in order to bind/update assigns, intercept events,
patches, and regular messages when necessary, and to inject
common functionality. Use attach_hook/1 on any of the following
lifecycle stages: :handle_params, :handle_event, :handle_info, and
:after_render. To attach a hook to the :mount stage, use on_mount/1.
Note: only :after_render hooks are currently supported in LiveComponents.

 return-values

 Return Values

Lifecycle hooks take place immediately before a given lifecycle
callback is invoked on the LiveView. With the exception of :after_render,
a hook may return {:halt, socket} to halt the reduction, otherwise
it must return {:cont, socket} so the operation may continue until
all hooks have been invoked for the current stage.
For :after_render hooks, the socket itself must be returned.
Any updates to the socket assigns will not trigger a new render
or diff calculation to the client.

 halting-the-lifecycle

 Halting the lifecycle

Note that halting from a hook will halt the entire lifecycle stage.
This means that when a hook returns {:halt, socket} then the
LiveView callback will not be invoked. This has some
implications.

 implications-for-plugin-authors

 Implications for plugin authors

When defining a plugin that matches on specific callbacks, you must
define a catch-all clause, as your hook will be invoked even for events
you may not be interested on.

 implications-for-end-users

 Implications for end-users

Allowing a hook to halt the invocation of the callback means that you can
attach hooks to intercept specific events before detaching themselves,
while allowing other events to continue normally.

 replying-to-events

 Replying to events

Hooks attached to the :handle_event stage are able to reply to client events
by returning {:halt, reply, socket}. This is useful especially for JavaScript
interoperability because a client hook
can push an event and receive a reply.

 examples

 Examples

Attaching and detaching a hook:
def mount(_params, _session, socket) do
 socket =
 attach_hook(socket, :my_hook, :handle_event, fn
 "very-special-event", _params, socket ->
 # Handle the very special event and then detach the hook
 {:halt, detach_hook(socket, :my_hook, :handle_event)}

 _event, _params, socket ->
 {:cont, socket}
 end)

 {:ok, socket}
end
Replying to a client event:
JavaScript:
let Hooks = {}
Hooks.ClientHook = {
mounted() {
this.pushEvent("ClientHook:mounted", {hello: "world"}, (reply) => {
console.log("received reply:", reply)
})
}
}
let liveSocket = new LiveSocket("/live", Socket, {hooks: Hooks, ...})

def render(assigns) do
 ~H"""
 <div id="my-client-hook" phx-hook="ClientHook"></div>
 """
end

def mount(_params, _session, socket) do
 socket =
 attach_hook(socket, :reply_on_client_hook_mounted, :handle_event, fn
 "ClientHook:mounted", params, socket ->
 {:halt, params, socket}

 _, _, socket ->
 {:cont, socket}
 end)

 {:ok, socket}
end

 Link to this function

 cancel_upload(socket, name, entry_ref)

 View Source

Cancels an upload for the given entry.

 examples

 Examples

<%= for entry <- @uploads.avatar.entries do %>
 ...
 <button phx-click="cancel-upload" phx-value-ref="<%= entry.ref %>">cancel</button>
<% end %>

def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
end

 Link to this function

 clear_flash(socket)

 View Source

Clears the flash.

 examples

 Examples

iex> clear_flash(socket)

 Link to this function

 clear_flash(socket, key)

 View Source

Clears a key from the flash.

 examples

 Examples

iex> clear_flash(socket, :info)

 Link to this function

 connected?(socket)

 View Source

Returns true if the socket is connected.
Useful for checking the connectivity status when mounting the view.
For example, on initial page render, the view is mounted statically,
rendered, and the HTML is sent to the client. Once the client
connects to the server, a LiveView is then spawned and mounted
statefully within a process. Use connected?/1 to conditionally
perform stateful work, such as subscribing to pubsub topics,
sending messages, etc.

 examples

 Examples

defmodule DemoWeb.ClockLive do
 use Phoenix.LiveView
 ...
 def mount(_params, _session, socket) do
 if connected?(socket), do: :timer.send_interval(1000, self(), :tick)

 {:ok, assign(socket, date: :calendar.local_time())}
 end

 def handle_info(:tick, socket) do
 {:noreply, assign(socket, date: :calendar.local_time())}
 end
end

 Link to this function

 consume_uploaded_entries(socket, name, func)

 View Source

Consumes the uploaded entries.
Raises when there are still entries in progress.
Typically called when submitting a form to handle the
uploaded entries alongside the form data. For form submissions,
it is guaranteed that all entries have completed before the submit event
is invoked. Once entries are consumed, they are removed from the upload.
The function passed to consume may return a tagged tuple of the form
{:ok, my_result} to collect results about the consumed entries, or
{:postpone, my_result} to collect results, but postpone the file
consumption to be performed later.

 examples

 Examples

def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join("priv/static/uploads", Path.basename(path))
 File.cp!(path, dest)
 {:ok, Routes.static_path(socket, "/uploads/#{Path.basename(dest)}")}
 end)
 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
end

 Link to this function

 consume_uploaded_entry(socket, entry, func)

 View Source

Consumes an individual uploaded entry.
Raises when the entry is still in progress.
Typically called when submitting a form to handle the
uploaded entries alongside the form data. Once entries are consumed,
they are removed from the upload.
This is a lower-level feature than consume_uploaded_entries/3 and useful
for scenarios where you want to consume entries as they are individually completed.
Like consume_uploaded_entries/3, the function passed to consume may return
a tagged tuple of the form {:ok, my_result} to collect results about the
consumed entries, or {:postpone, my_result} to collect results,
but postpone the file consumption to be performed later.

 examples

 Examples

def handle_event("save", _params, socket) do
 case uploaded_entries(socket, :avatar) do
 {[_|_] = entries, []} ->
 uploaded_files = for entry <- entries do
 consume_uploaded_entry(socket, entry, fn %{path: path} ->
 dest = Path.join("priv/static/uploads", Path.basename(path))
 File.cp!(path, dest)
 {:ok, Routes.static_path(socket, "/uploads/#{Path.basename(dest)}")}
 end)
 end
 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}

 _ ->
 {:noreply, socket}
 end
end

 Link to this function

 detach_hook(socket, name, stage)

 View Source

Detaches a hook with the given name from the lifecycle stage.
Note: This function is for server-side lifecycle callbacks.
For client-side hooks, see the
JS Interop guide.

If no hook is found, this function is a no-op.

 examples

 Examples

def handle_event(_, socket) do
 {:noreply, detach_hook(socket, :hook_that_was_attached, :handle_event)}
end

 Link to this function

 disallow_upload(socket, name)

 View Source

Revokes a previously allowed upload from allow_upload/3.

 examples

 Examples

disallow_upload(socket, :avatar)

 Link to this function

 get_connect_info(socket)

 View Source

 This function is deprecated. use get_connect_info/2 instead.

 Link to this function

 get_connect_info(socket, key)

 View Source

Accesses a given connect info key from the socket.
The following keys are supported: :peer_data, :trace_context_headers,
:x_headers, :uri, and :user_agent.
The connect information is available only during mount. During disconnected
render, all keys are available. On connected render, only the keys explicitly
declared in your socket are available. See Phoenix.Endpoint.socket/3 for
a complete description of the keys.

 examples

 Examples

The first step is to declare the connect_info you want to receive.
Typically, it includes at least the session, but you must include all
other keys you want to access on connected mount, such as :peer_data:
socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [:peer_data, session: @session_options]]
Those values can now be accessed on the connected mount as
get_connect_info/2:
def mount(_params, _session, socket) do
 peer_data = get_connect_info(socket, :peer_data)
 {:ok, assign(socket, ip: peer_data.address)}
end
If the key is not available, usually because it was not specified
in connect_info, it returns nil.

 Link to this function

 get_connect_params(socket)

 View Source

Accesses the connect params sent by the client for use on connected mount.
Connect params are only sent when the client connects to the server and
only remain available during mount. nil is returned when called in a
disconnected state and a RuntimeError is raised if called after mount.

 reserved-params

 Reserved params

The following params have special meaning in LiveView:
	"_csrf_token" - the CSRF Token which must be explicitly set by the user
when connecting
	"_mounts" - the number of times the current LiveView is mounted.
It is 0 on first mount, then increases on each reconnect. It resets
when navigating away from the current LiveView or on errors
	"_track_static" - set automatically with a list of all href/src from
tags with the phx-track-static annotation in them. If there are no
such tags, nothing is sent
	"_live_referer" - sent by the client as the referer URL when a
live navigation has occurred from push_navigate or client link navigate.

 examples

 Examples

def mount(_params, _session, socket) do
 {:ok, assign(socket, width: get_connect_params(socket)["width"] || @width)}
end

 Link to this macro

 on_mount(mod_or_mod_arg)

 View Source

 (macro)

Declares a module callback to be invoked on the LiveView's mount.
The function within the given module, which must be named on_mount,
will be invoked before both disconnected and connected mounts. The hook
has the option to either halt or continue the mounting process as usual.
If you wish to redirect the LiveView, you must halt, otherwise an error
will be raised.
Tip: if you need to define multiple on_mount callbacks, avoid defining
multiple modules. Instead, pass a tuple and use pattern matching to handle
different cases:
def on_mount(:admin, _params, _session, socket) do
 {:cont, socket}
end

def on_mount(:user, _params, _session, socket) do
 {:cont, socket}
end
And then invoke it as:
on_mount {MyAppWeb.SomeHook, :admin}
on_mount {MyAppWeb.SomeHook, :user}
Registering on_mount hooks can be useful to perform authentication
as well as add custom behaviour to other callbacks via attach_hook/4.

 examples

 Examples

The following is an example of attaching a hook via
Phoenix.LiveView.Router.live_session/3:
lib/my_app_web/live/init_assigns.ex
defmodule MyAppWeb.InitAssigns do
 @moduledoc """
 Ensures common `assigns` are applied to all LiveViews attaching this hook.
 """
 import Phoenix.LiveView
 import Phoenix.Component

 def on_mount(:default, _params, _session, socket) do
 {:cont, assign(socket, :page_title, "DemoWeb")}
 end

 def on_mount(:user, params, session, socket) do
 # code
 end

 def on_mount(:admin, params, session, socket) do
 # code
 end
end

lib/my_app_web/router.ex
defmodule MyAppWeb.Router do
 use MyAppWeb, :router

 # pipelines, plugs, etc.

 live_session :default, on_mount: MyAppWeb.InitAssigns do
 scope "/", MyAppWeb do
 pipe_through :browser
 live "/", PageLive, :index
 end
 end

 live_session :authenticated, on_mount: {MyAppWeb.InitAssigns, :user} do
 scope "/", MyAppWeb do
 pipe_through [:browser, :require_user]
 live "/profile", UserLive.Profile, :index
 end
 end

 live_session :admins, on_mount: {MyAppWeb.InitAssigns, :admin} do
 scope "/admin", MyAppWeb.Admin do
 pipe_through [:browser, :require_user, :require_admin]
 live "/", AdminLive.Index, :index
 end
 end
end

 Link to this function

 push_event(socket, event, payload)

 View Source

Pushes an event to the client.
Events can be handled in two ways:
	They can be handled on window via addEventListener.
A "phx:" prefix will be added to the event name.

	They can be handled inside a hook via handleEvent.

Note that events are dispatched to all active hooks on the client who are
handling the given event. If you need to scope events, then this must
be done by namespacing them.

 hook-example

 Hook example

If you push a "scores" event from your LiveView:
{:noreply, push_event(socket, "scores", %{points: 100, user: "josé"})}
A hook declared via phx-hook can handle it via handleEvent:
this.handleEvent("scores", data => ...)

 window-example

 window example

All events are also dispatched on the window. This means you can handle
them by adding listeners. For example, if you want to remove an element
from the page, you can do this:
{:noreply, push_event(socket, "remove-el", %{id: "foo-bar"})}
And now in your app.js you can register and handle it:
window.addEventListener(
 "phx:remove-el",
 e => document.getElementById(e.detail.id).remove()
)

 Link to this function

 push_navigate(socket, opts)

 View Source

Annotates the socket for navigation to another LiveView.
The current LiveView will be shutdown and a new one will be mounted
in its place, without reloading the whole page. This can
also be used to remount the same LiveView, in case you want to start
fresh. If you want to navigate to the same LiveView without remounting
it, use push_patch/2 instead.

 options

 Options

	:to - the required path to link to. It must always be a local path
	:replace - the flag to replace the current history or push a new state.
Defaults false.

 examples

 Examples

{:noreply, push_navigate(socket, to: "/")}
{:noreply, push_navigate(socket, to: "/", replace: true)}

 Link to this function

 push_patch(socket, opts)

 View Source

Annotates the socket for navigation within the current LiveView.
When navigating to the current LiveView, handle_params/3 is
immediately invoked to handle the change of params and URL state.
Then the new state is pushed to the client, without reloading the
whole page while also maintaining the current scroll position.
For live navigation to another LiveView, use push_navigate/2.

 options

 Options

	:to - the required path to link to. It must always be a local path
	:replace - the flag to replace the current history or push a new state.
Defaults false.

 examples

 Examples

{:noreply, push_patch(socket, to: "/")}
{:noreply, push_patch(socket, to: "/", replace: true)}

 Link to this function

 push_redirect(socket, opts)

 View Source

 This function is deprecated. Use push_navigate/2 instead.

Annotates the socket for navigation to another LiveView.
The current LiveView will be shutdown and a new one will be mounted
in its place, without reloading the whole page. This can
also be used to remount the same LiveView, in case you want to start
fresh. If you want to navigate to the same LiveView without remounting
it, use push_patch/2 instead.

 options

 Options

	:to - the required path to link to. It must always be a local path
	:replace - the flag to replace the current history or push a new state.
Defaults false.

 examples

 Examples

{:noreply, push_redirect(socket, to: "/")}
{:noreply, push_redirect(socket, to: "/", replace: true)}

 Link to this function

 put_flash(socket, kind, msg)

 View Source

Adds a flash message to the socket to be displayed.
Note: While you can use put_flash/3 inside a Phoenix.LiveComponent,
components have their own @flash assigns. The @flash assign
in a component is only copied to its parent LiveView if the component
calls push_navigate/2 or push_patch/2.
Note: You must also place the Phoenix.LiveView.Router.fetch_live_flash/2
plug in your browser's pipeline in place of fetch_flash for LiveView flash
messages be supported, for example:
import Phoenix.LiveView.Router

pipeline :browser do
 ...
 plug :fetch_live_flash
end

 examples

 Examples

iex> put_flash(socket, :info, "It worked!")
iex> put_flash(socket, :error, "You can't access that page")

 Link to this function

 redirect(socket, opts \\ [])

 View Source

Annotates the socket for redirect to a destination path.
Note: LiveView redirects rely on instructing client
to perform a window.location update on the provided
redirect location. The whole page will be reloaded and
all state will be discarded.

 options

 Options

	:to - the path to redirect to. It must always be a local path
	:external - an external path to redirect to. Either a string
or {scheme, url} to redirect to a custom scheme

 Link to this function

 send_update(pid \\ self(), module, assigns)

 View Source

Asynchronously updates a Phoenix.LiveComponent with new assigns.
The :id that identifies the component must be passed as part of the
assigns and it will be used to identify the live components to be updated.
The pid argument is optional and it defaults to the current process,
which means the update instruction will be sent to a component running
on the same LiveView. If the current process is not a LiveView or you
want to send updates to a live component running on another LiveView,
you should explicitly pass the LiveView's pid instead.
When the component receives the update, first the optional
preload/1 then
update/2 is invoked with the new assigns.
If update/2 is not defined
all assigns are simply merged into the socket. The assigns received as the first argument of the update/2 callback will only include the new assigns passed from this function. Pre-existing assigns may be found in socket.assigns.
While a component may always be updated from the parent by updating some
parent assigns which will re-render the child, thus invoking
update/2 on the child component,
send_update/3 is useful for updating a component that entirely manages its
own state, as well as messaging between components mounted in the same
LiveView.

 examples

 Examples

def handle_event("cancel-order", _, socket) do
 ...
 send_update(Cart, id: "cart", status: "cancelled")
 {:noreply, socket}
end

def handle_event("cancel-order-asynchronously", _, socket) do
 ...
 pid = self()

 Task.start(fn ->
 # Do something asynchronously
 send_update(pid, Cart, id: "cart", status: "cancelled")
 end)

 {:noreply, socket}
end

 Link to this function

 send_update_after(pid \\ self(), module, assigns, time_in_milliseconds)

 View Source

Similar to send_update/3 but the update will be delayed according to the given time_in_milliseconds.

 examples

 Examples

def handle_event("cancel-order", _, socket) do
 ...
 send_update_after(Cart, [id: "cart", status: "cancelled"], 3000)
 {:noreply, socket}
end

def handle_event("cancel-order-asynchronously", _, socket) do
 ...
 pid = self()

 Task.start(fn ->
 # Do something asynchronously
 send_update_after(pid, Cart, [id: "cart", status: "cancelled"], 3000)
 end)

 {:noreply, socket}
end

 Link to this function

 static_changed?(socket)

 View Source

Returns true if the socket is connected and the tracked static assets have changed.
This function is useful to detect if the client is running on an outdated
version of the marked static files. It works by comparing the static paths
sent by the client with the one on the server.
Note: this functionality requires Phoenix v1.5.2 or later.
To use this functionality, the first step is to annotate which static files
you want to be tracked by LiveView, with the phx-track-static. For example:
<link phx-track-static rel="stylesheet" href="<%= Routes.static_path(@conn, "/css/app.css") %>"/>
<script defer phx-track-static type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>
Now, whenever LiveView connects to the server, it will send a copy src
or href attributes of all tracked statics and compare those values with
the latest entries computed by mix phx.digest in the server.
The tracked statics on the client will match the ones on the server the
huge majority of times. However, if there is a new deployment, those values
may differ. You can use this function to detect those cases and show a
banner to the user, asking them to reload the page. To do so, first set the
assign on mount:
def mount(params, session, socket) do
 {:ok, assign(socket, static_changed?: static_changed?(socket))}
end
And then in your views:
<%= if @static_changed? do %>
 <div id="reload-static">
 The app has been updated. Click here to reload.
 </div>
<% end %>
If you prefer, you can also send a JavaScript script that immediately
reloads the page.
Note: only set phx-track-static on your own assets. For example, do
not set it in external JavaScript files:
<script defer phx-track-static type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
Because you don't actually serve the file above, LiveView will interpret
the static above as missing, and this function will return true.

 Link to this function

 stream(socket, name, items, opts \\ [])

 View Source

Assigns a new stream to the socket.
Streams are a mechanism for managing large collections on the client without
keeping the resources on the server.
	name - The string or atom name of the key to place under the
@streams assign.
	items - The enumerable of items for initial insert

The following options are supported:
	:at - the index to insert or update the items in the
collection on the client. By default -1 is used, which appends the items
to the parent DOM container. A value of 0 prepends the items.

	:reset - the boolean to reset the stream on the client or not. Defaults
to false.

	:limit - the optional positive or negative number of results to limit
on the UI on the client. As new items are streamed, the UI will remove existing
items to maintain the limit. For example, to limit the stream to the last 10 items
in the UI while appending new items, pass a negative value:
stream(socket, :posts, posts, at: -1, limit: -10)
Likewise, to limit the stream to the first 10 items, while prepending new items,
pass a positive value:
stream(socket, :posts, posts, at: 0, limit: 10)

Once a stream is defined, a new @streams assign is available containing
the name of the defined streams. For example, in the above definition, the
stream may be referenced as @streams.songs in your template. Stream items
are temporary and freed from socket state as soon as they are rendered.
By default, calling stream/4 on an existing stream will bulk insert the new items
on the client while leaving the existing items in place. Streams may also be reset
when calling stream/4, which we discuss below.

 resetting-a-stream

 Resetting a stream

To empty a stream container on the client, you can pass :reset with an empty list:
 stream(socket, :songs, [], reset: true)
Or you can replace the entire stream on the client with a new collection:
 stream(socket, :songs, new_songs, reset: true)

 limiting-a-stream

 Limiting a stream

It is often useful to limit the number of items in the UI while allowing the
server to stream new items in a fire-and-forget fashion. This prevents
the server from overwhelming the client with new results while also opening up
powerful features like virtualized infinite scrolling. See a complete
bidirectional infinite scrolling example with stream limits in the
scroll events guide
When a stream exceeds the limit on the client, the existing items will be removed
based on the

 required-dom-attributes

 Required DOM attributes

For stream items to be trackable on the client, the following requirements
must be met:
	The parent DOM container must include a phx-update="stream" attribute,
along with a unique DOM id.
	Each stream item must include its DOM id on the item's element.

Note: Failing to place phx-update="stream" on the immediate parent for
each stream will result in broken behavior.

When consuming a stream in a template, the DOM id and item is passed as a tuple,
allowing convenient inclusion of the DOM id for each item. For example:
<table>
 <tbody id="songs" phx-update="stream">
 <tr
 :for={{dom_id, song} <- @streams.songs}
 id={dom_id}
 >
 <td><%= song.title %></td>
 <td><%= song.duration %></td>
 </tr>
 </tbody>
</table>
We consume the stream in a for comprehension by referencing the
@streams.songs assign. We used the computed DOM id to populate
the <tr> id, then we render the table row as usual.
Now stream_insert/3 and stream_delete/3 may be issued and new rows will
be inserted or deleted from the client.

 Link to this function

 stream_configure(socket, name, opts)

 View Source

Configures a stream.
The following options are supported:
	:dom_id - The optional function to generate each stream item's DOM id.
The function accepts each stream item and converts the item to a string id.
By default, the :id field of a map or struct will be used if the item has
such a field, and will be prefixed by the name hyphenated with the id.
For example, the following examples are equivalent:
stream(socket, :songs, songs)

socket
|> stream_configure(:songs, dom_id: &("songs-#{&1.id}"))
|> stream(:songs, songs)

A stream must be configured before items are inserted, and once configured,
a stream may not be re-configured. To ensure a stream is only configured a
single time in a LiveComponent, use the mount/1 callback. For example:
def mount(socket) do
 {:ok, stream_configure(socket, :songs, dom_id: &("songs-#{&1.id}"))}
end

def update(assigns, socket) do
 {:ok, stream(socket, :songs, ...)}
end

 Link to this function

 stream_delete(socket, name, item)

 View Source

Deletes an item from the stream.
The item's DOM is computed from the :dom_id provided in the stream/3 definition.
Delete information for this DOM id is sent to the client and the item's element
is removed from the DOM, following the same behavior of element removal, such as
invoking phx-remove commands and executing client hook destroyed() callbacks.

 examples

 Examples

def handle_event("delete", %{"id" => id}, socket) do
 song = get_song!(id)
 {:noreply, stream_delete(socket, :songs, song)}
end
See stream_delete_by_dom_id/3 to remove an item without requiring the
original datastructure.

 Link to this function

 stream_delete_by_dom_id(socket, name, id)

 View Source

Deletes an item from the stream given its computed DOM id.
Behaves just like stream_delete/3, but accept the precomputed DOM id,
which allows deleting from a stream without fetching or building the original
stream datastructure.

 examples

 Examples

def render(assigns) do
 ~H"""
 <table>
 <tbody id="songs" phx-update="stream">
 <tr
 :for={{dom_id, song} <- @streams.songs}
 id={dom_id}
 >
 <td><%= song.title %></td>
 <td><button phx-click={JS.push("delete", value: %{id: dom_id})}>delete</button></td>
 </tr>
 </tbody>
 </table>
 """
end

def handle_event("delete", %{"id" => dom_id}, socket) do
 {:noreply, stream_delete_by_dom_id(socket, :songs, dom_id)}
end

 Link to this function

 stream_insert(socket, name, item, opts \\ [])

 View Source

Inserts a new item or updates an existing item in the stream.
By default, the item is appended to the parent DOM container.
The :at option may be provided to insert or update an item
to a particular index in the collection on the client.
See stream/4 for inserting multiple items at once.

 examples

 Examples

Imagine you define a stream on mount with a single item:
stream(socket, :songs, [%Song{id: 1, title: "Song 1"}])
Then, in a callback such as handle_info or handle_event, you
can append a new song:
stream_insert(socket, :songs, %Song{id: 2, title: "Song 2"})
Or prepend a new song with at: 0:
stream_insert(socket, :songs, %Song{id: 2, title: "Song 2"}, at: 0)
Or updating an existing song, while also moving it to the top of the collection:
stream_insert(socket, :songs, %Song{id: 1, title: "Song 1 updated"}, at: 0)

 updating-items

 Updating Items

As shown, an existing item on the client can be updated by issuing a stream_insert for
the existing item. When the client updates an existing item with an "append" operation
(passing the at: -1 option), the item will remain in the same location as it was
previously, and will not be moved to the end of the parent children. To both update an
existing item and move it to the end of a collection, issue a stream_delete, followed
by a stream_insert. For example:
song = get_song!(id)

socket
|> stream_delete(:songs, song)
|> stream_insert(:songs, song, at: -1)
See stream_delete/3 for more information on deleting items.

 Link to this function

 transport_pid(socket)

 View Source

Returns the transport pid of the socket.
Raises ArgumentError if the socket is not connected.

 examples

 Examples

iex> transport_pid(socket)
#PID<0.107.0>

 Link to this function

 uploaded_entries(socket, name)

 View Source

Returns the completed and in progress entries for the upload.

 examples

 Examples

case uploaded_entries(socket, :photos) do
 {[_ | _] = completed, []} ->
 # all entries are completed

 {[], [_ | _] = in_progress} ->
 # all entries are still in progress
end

 Phoenix.LiveView.Controller - Phoenix LiveView v0.19.3

Phoenix.LiveView.Controller

Helpers for rendering LiveViews from a controller.

 Anchor for this section

 Summary

 Functions

 live_render(conn, view, opts \\ [])

 Renders a live view from a Plug request and sends an HTML response
from within a controller.

 Anchor for this section

Functions

 Link to this function

 live_render(conn, view, opts \\ [])

 View Source

Renders a live view from a Plug request and sends an HTML response
from within a controller.
It also automatically sets the @live_module assign with the value
of the LiveView to be rendered.

 options

 Options

See Phoenix.Component.live_render/3 for all supported options.

 examples

 Examples

defmodule ThermostatController do
 use MyAppWeb, :controller

 # "use MyAppWeb, :controller" should import Phoenix.LiveView.Controller.
 # If it does not, you can either import it there or uncomment the line below:
 # import Phoenix.LiveView.Controller

 def show(conn, %{"id" => thermostat_id}) do
 live_render(conn, ThermostatLive, session: %{
 "thermostat_id" => thermostat_id,
 "current_user_id" => get_session(conn, :user_id)
 })
 end
end

 Phoenix.LiveView.JS - Phoenix LiveView v0.19.3

Phoenix.LiveView.JS

Provides commands for executing JavaScript utility operations on the client.
JS commands support a variety of utility operations for common client-side
needs, such as adding or removing CSS classes, setting or removing tag attributes,
showing or hiding content, and transitioning in and out with animations.
While these operations can be accomplished via client-side hooks,
JS commands are DOM-patch aware, so operations applied
by the JS APIs will stick to elements across patches from the server.
In addition to purely client-side utilities, the JS commands include a
rich push API, for extending the default phx- binding pushes with
options to customize targets, loading states, and additional payload values.
Client Utility Commands
The following utilities are included:
	add_class - Add classes to elements, with optional transitions
	remove_class - Remove classes from elements, with optional transitions
	set_attribute - Set an attribute on elements
	remove_attribute - Remove an attribute from elements
	show - Show elements, with optional transitions
	hide - Hide elements, with optional transitions
	toggle - Shows or hides elements based on visibility, with optional transitions
	transition - Apply a temporary transition to elements for animations
	dispatch - Dispatch a DOM event to elements

For example, the following modal component can be shown or hidden on the
client without a trip to the server:
alias Phoenix.LiveView.JS

def hide_modal(js \\ %JS{}) do
 js
 |> JS.hide(transition: "fade-out", to: "#modal")
 |> JS.hide(transition: "fade-out-scale", to: "#modal-content")
end

def modal(assigns) do
 ~H"""
 <div id="modal" class="phx-modal" phx-remove={hide_modal()}>
 <div
 id="modal-content"
 class="phx-modal-content"
 phx-click-away={hide_modal()}
 phx-window-keydown={hide_modal()}
 phx-key="escape"
 >
 <button class="phx-modal-close" phx-click={hide_modal()}>✖</button>
 <p><%= @text %></p>
 </div>
 </div>
 """
end
Enhanced push events
The push/1 command allows you to extend the built-in pushed event handling
when a phx- event is pushed to the server. For example, you may wish to
target a specific component, specify additional payload values to include
with the event, apply loading states to external elements, etc. For example,
given this basic phx-click event:
<button phx-click="inc">+</button>
Imagine you need to target your current component, and apply a loading state
to the parent container while the client awaits the server acknowledgement:
alias Phoenix.LiveView.JS

<button phx-click={JS.push("inc", loading: ".thermo", target: @myself)}>+</button>
Push commands also compose with all other utilities. For example,
to add a class when pushing:
<button phx-click={
 JS.push("inc", loading: ".thermo", target: @myself)
 |> JS.add_class("warmer", to: ".thermo")
}>+</button>
Any phx-value-* attributes will also be included in the payload, their
values will be overwritten by values given directly to push/1. Any
phx-target attribute will also be used, and overwritten.
<button
 phx-click={JS.push("inc", value: %{limit: 40})}
 phx-value-room="bedroom"
 phx-value-limit="this value will be 40"
 phx-target={@myself}
>+</button>
Custom JS events with JS.dispatch/1 and window.addEventListener
dispatch/1 can be used to dispatch custom JavaScript events to
elements. For example, you can use JS.dispatch("click", to: "#foo"),
to dispatch a click event to an element.
This also means you can augment your elements with custom events,
by using JavaScript's window.addEventListener and invoking them
with dispatch/1. For example, imagine you want to provide
a copy-to-clipboard functionality in your application. You can
add a custom event for it:
window.addEventListener("my_app:clipcopy", (event) => {
 if ("clipboard" in navigator) {
 const text = event.target.textContent;
 navigator.clipboard.writeText(text);
 } else {
 alert("Sorry, your browser does not support clipboard copy.");
 }
});
Now you can have a button like this:
<button phx-click={JS.dispatch("my_app:clipcopy", to: "#element-with-text-to-copy")}>
 Copy content
</button>
The combination of dispatch/1 with window.addEventListener is
a powerful mechanism to increase the amount of actions you can trigger
client-side from your LiveView code.
You can also use window.addEventListener to listen to events pushed
from the server. You can learn more in our JS interoperability guide.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 add_class(names)

 Adds classes to elements.

 add_class(js, names)

 See add_class/1.

 add_class(js, names, opts)

 See add_class/1.

 dispatch(js \\ %JS{}, event)

 Dispatches an event to the DOM.

 dispatch(js, event, opts)

 See dispatch/2.

 exec(attr)

 Executes JS commands located in element attributes.

 exec(attr, opts)

 See exec/1.

 exec(js, attr, opts)

 See exec/1.

 focus(opts \\ [])

 Sends focus to a selector.

 focus(js, opts)

 See focus/1.

 focus_first(opts \\ [])

 Sends focus to the first focusable child in selector.

 focus_first(js, opts)

 See focus_first/1.

 hide(opts \\ [])

 Hides elements.

 hide(js, opts)

 See hide/1.

 navigate(href)

 Sends a navigation event to the server and updates the browser's pushState history.

 navigate(href, opts)

 See navigate/1.

 navigate(js, href, opts)

 See navigate/1.

 patch(href)

 Sends a patch event to the server and updates the browser's pushState history.

 patch(href, opts)

 See patch/1.

 patch(js, href, opts)

 See patch/1.

 pop_focus(js \\ %JS{})

 Focuses the last pushed element.

 push(event)

 Pushes an event to the server.

 push(event, opts)

 See push/1.

 push(js, event, opts)

 See push/1.

 push_focus(opts \\ [])

 Pushes focus from the source element to be later popped.

 push_focus(js, opts)

 See push_focus/1.

 remove_attribute(attr)

 Removes an attribute from elements.

 remove_attribute(attr, opts)

 See remove_attribute/1.

 remove_attribute(js, attr, opts)

 See remove_attribute/1.

 remove_class(names)

 Removes classes from elements.

 remove_class(js, names)

 See remove_class/1.

 remove_class(js, names, opts)

 See remove_class/1.

 set_attribute(arg)

 Sets an attribute on elements.

 set_attribute(js, opts)

 See set_attribute/1.

 set_attribute(js, arg, opts)

 See set_attribute/1.

 show(opts \\ [])

 Shows elements.

 show(js, opts)

 See show/1.

 toggle(opts \\ [])

 Toggles element visibility.

 toggle(js, opts)

 See toggle/1.

 transition(transition)

 Transitions elements.

 transition(transition, opts)

 See transition/1.

 transition(js, transition, opts)

 See transition/1.

 Anchor for this section

Types

 Link to this opaque

 t()

 View Source

 (opaque)

 @opaque t()

 Anchor for this section

Functions

 Link to this function

 add_class(names)

 View Source

Adds classes to elements.
	names - The string of classes to add.

 options

 Options

	:to - The optional DOM selector to add classes to.
Defaults to the interacted element.
	:transition - The string of classes to apply before adding classes or
a 3-tuple containing the transition class, the class to apply
to start the transition, and the ending transition class, such as:
{"ease-out duration-300", "opacity-0", "opacity-100"}
	:time - The time to apply the transition from :transition.
Defaults 200

 examples

 Examples

<div id="item">My Item</div>
<button phx-click={JS.add_class("highlight underline", to: "#item")}>
 highlight!
</button>

 Link to this function

 add_class(js, names)

 View Source

See add_class/1.

 Link to this function

 add_class(js, names, opts)

 View Source

See add_class/1.

 Link to this function

 dispatch(js \\ %JS{}, event)

 View Source

Dispatches an event to the DOM.
	event - The string event name to dispatch.

Note: All events dispatched are of a type
CustomEvent,
with the exception of "click". For a "click", a
MouseEvent
is dispatched to properly simulate a UI click.
For emitted CustomEvent's, the event detail will contain a dispatcher,
which references the DOM node that dispatched the JS event to the target
element.

 options

 Options

	:to - The optional DOM selector to dispatch the event to.
Defaults to the interacted element.
	:detail - The optional detail map to dispatch along
with the client event. The details will be available in the
event.detail attribute for event listeners.
	:bubbles – The boolean flag to bubble the event or not. Default true.

 examples

 Examples

window.addEventListener("click", e => console.log("clicked!", e.detail))

<button phx-click={JS.dispatch("click", to: ".nav")}>Click me!</button>

 Link to this function

 dispatch(js, event, opts)

 View Source

See dispatch/2.

 Link to this function

 exec(attr)

 View Source

Executes JS commands located in element attributes.
	attr - The string attribute where the JS command is specified

 options

 Options

	:to - The optional DOM selector to fetch the attribute from.
Defaults to the current element.

 examples

 Examples

<div id="modal" phx-remove={JS.hide("#modal")}>...</div>
<button phx-click={JS.exec("phx-remove", to: "#modal")}>close</button>

 Link to this function

 exec(attr, opts)

 View Source

See exec/1.

 Link to this function

 exec(js, attr, opts)

 View Source

See exec/1.

 Link to this function

 focus(opts \\ [])

 View Source

Sends focus to a selector.

 options

 Options

	:to - The optional DOM selector to send focus to.
Defaults to the current element.

 examples

 Examples

JS.focus(to: "main")

 Link to this function

 focus(js, opts)

 View Source

See focus/1.

 Link to this function

 focus_first(opts \\ [])

 View Source

Sends focus to the first focusable child in selector.

 options

 Options

	:to - The optional DOM selector to focus.
Defaults to the current element.

 examples

 Examples

JS.focus_first(to: "#modal")

 Link to this function

 focus_first(js, opts)

 View Source

See focus_first/1.

 Link to this function

 hide(opts \\ [])

 View Source

Hides elements.

 options

 Options

	:to - The optional DOM selector to hide.
Defaults to the interacted element.
	:transition - The string of classes to apply before hiding or
a 3-tuple containing the transition class, the class to apply
to start the transition, and the ending transition class, such as:
{"ease-out duration-300", "opacity-100", "opacity-0"}
	:time - The time to apply the transition from :transition.
Defaults 200

During the process, the following events will be dispatched to the hidden elements:
	When the action is triggered on the client, phx:hide-start is dispatched.
	After the time specified by :time, phx:hide-end is dispatched.

 examples

 Examples

<div id="item">My Item</div>

<button phx-click={JS.hide(to: "#item")}>
 hide!
</button>

<button phx-click={JS.hide(to: "#item", transition: "fade-out-scale")}>
 hide fancy!
</button>

 Link to this function

 hide(js, opts)

 View Source

See hide/1.

 Link to this function

 navigate(href)

 View Source

Sends a navigation event to the server and updates the browser's pushState history.

 options

 Options

	:replace - Whether to replace the browser's pushState history. Defaults false.

 examples

 Examples

JS.navigate("/my-path")

 Link to this function

 navigate(href, opts)

 View Source

See navigate/1.

 Link to this function

 navigate(js, href, opts)

 View Source

See navigate/1.

 Link to this function

 patch(href)

 View Source

Sends a patch event to the server and updates the browser's pushState history.

 options

 Options

	:replace - Whether to replace the browser's pushState history. Defaults false.

 examples

 Examples

JS.patch("/my-path")

 Link to this function

 patch(href, opts)

 View Source

See patch/1.

 Link to this function

 patch(js, href, opts)

 View Source

See patch/1.

 Link to this function

 pop_focus(js \\ %JS{})

 View Source

Focuses the last pushed element.

 examples

 Examples

JS.pop_focus()

 Link to this function

 push(event)

 View Source

Pushes an event to the server.
	event - The string event name to push.

 options

 Options

	:target - The selector or component ID to push to. This value will
overwrite any phx-target attribute present on the element.
	:loading - The selector to apply the phx loading classes to.
	:page_loading - Boolean to trigger the phx:page-loading-start and
phx:page-loading-stop events for this push. Defaults to false.
	:value - The map of values to send to the server. These values will be
merged over any phx-value-* attributes that are present on the element.
All keys will be treated as strings when merging.

 examples

 Examples

<button phx-click={JS.push("clicked")}>click me!</button>
<button phx-click={JS.push("clicked", value: %{id: @id})}>click me!</button>
<button phx-click={JS.push("clicked", page_loading: true)}>click me!</button>

 Link to this function

 push(event, opts)

 View Source

See push/1.

 Link to this function

 push(js, event, opts)

 View Source

See push/1.

 Link to this function

 push_focus(opts \\ [])

 View Source

Pushes focus from the source element to be later popped.

 options

 Options

	:to - The optional DOM selector to push focus to.
Defaults to the current element.

 examples

 Examples

JS.push_focus()
JS.push_focus(to: "#my-button")

 Link to this function

 push_focus(js, opts)

 View Source

See push_focus/1.

 Link to this function

 remove_attribute(attr)

 View Source

Removes an attribute from elements.
	attr - The string attribute name to remove.

 options

 Options

	:to - The optional DOM selector to remove attributes from.
Defaults to the interacted element.

 examples

 Examples

<button phx-click={JS.remove_attribute("aria-expanded", to: "#dropdown")}>
 hide
</button>

 Link to this function

 remove_attribute(attr, opts)

 View Source

See remove_attribute/1.

 Link to this function

 remove_attribute(js, attr, opts)

 View Source

See remove_attribute/1.

 Link to this function

 remove_class(names)

 View Source

Removes classes from elements.
	names - The string of classes to remove.

 options

 Options

	:to - The optional DOM selector to remove classes from.
Defaults to the interacted element.
	:transition - The string of classes to apply before removing classes or
a 3-tuple containing the transition class, the class to apply
to start the transition, and the ending transition class, such as:
{"ease-out duration-300", "opacity-0", "opacity-100"}
	:time - The time to apply the transition from :transition.
Defaults 200

 examples

 Examples

<div id="item">My Item</div>
<button phx-click={JS.remove_class("highlight underline", to: "#item")}>
 remove highlight!
</button>

 Link to this function

 remove_class(js, names)

 View Source

See remove_class/1.

 Link to this function

 remove_class(js, names, opts)

 View Source

See remove_class/1.

 Link to this function

 set_attribute(arg)

 View Source

Sets an attribute on elements.
Accepts a tuple containing the string attribute name/value pair.

 options

 Options

	:to - The optional DOM selector to add attributes to.
Defaults to the interacted element.

 examples

 Examples

<button phx-click={JS.set_attribute({"aria-expanded", "true"}, to: "#dropdown")}>
 show
</button>

 Link to this function

 set_attribute(js, opts)

 View Source

See set_attribute/1.

 Link to this function

 set_attribute(js, arg, opts)

 View Source

See set_attribute/1.

 Link to this function

 show(opts \\ [])

 View Source

Shows elements.

 options

 Options

	:to - The optional DOM selector to show.
Defaults to the interacted element.
	:transition - The string of classes to apply before showing or
a 3-tuple containing the transition class, the class to apply
to start the transition, and the ending transition class, such as:
{"ease-out duration-300", "opacity-0", "opacity-100"}
	:time - The time to apply the transition from :transition.
Defaults 200
	:display - The optional display value to set when showing. Defaults "block".

During the process, the following events will be dispatched to the shown elements:
	When the action is triggered on the client, phx:show-start is dispatched.
	After the time specified by :time, phx:show-end is dispatched.

 examples

 Examples

<div id="item">My Item</div>

<button phx-click={JS.show(to: "#item")}>
 show!
</button>

<button phx-click={JS.show(to: "#item", transition: "fade-in-scale")}>
 show fancy!
</button>

 Link to this function

 show(js, opts)

 View Source

See show/1.

 Link to this function

 toggle(opts \\ [])

 View Source

Toggles element visibility.

 options

 Options

	:to - The optional DOM selector to toggle.
Defaults to the interacted element.
	:in - The string of classes to apply when toggling in, or
a 3-tuple containing the transition class, the class to apply
to start the transition, and the ending transition class, such as:
{"ease-out duration-300", "opacity-0", "opacity-100"}
	:out - The string of classes to apply when toggling out, or
a 3-tuple containing the transition class, the class to apply
to start the transition, and the ending transition class, such as:
{"ease-out duration-300", "opacity-100", "opacity-0"}
	:time - The time to apply the transition :in and :out classes.
Defaults 200
	:display - The optional display value to set when toggling in. Defaults "block".

When the toggle is complete on the client, a phx:show-start or phx:hide-start, and
phx:show-end or phx:hide-end event will be dispatched to the toggled elements.

 examples

 Examples

<div id="item">My Item</div>

<button phx-click={JS.toggle(to: "#item")}>
 toggle item!
</button>

<button phx-click={JS.toggle(to: "#item", in: "fade-in-scale", out: "fade-out-scale")}>
 toggle fancy!
</button>

 Link to this function

 toggle(js, opts)

 View Source

See toggle/1.

 Link to this function

 transition(transition)

 View Source

Transitions elements.
	transition - The string of classes to apply before removing classes or
a 3-tuple containing the transition class, the class to apply
to start the transition, and the ending transition class, such as:
{"ease-out duration-300", "opacity-0", "opacity-100"}

Transitions are useful for temporarily adding an animation class
to element(s), such as for highlighting content changes.

 options

 Options

	:to - The optional DOM selector to apply transitions to.
Defaults to the interacted element.
	:time - The time to apply the transition from :transition.
Defaults 200

 examples

 Examples

<div id="item">My Item</div>
<button phx-click={JS.transition("shake", to: "#item")}>Shake!</button>

 Link to this function

 transition(transition, opts)

 View Source

See transition/1.

 Link to this function

 transition(js, transition, opts)

 View Source

See transition/1.

 Phoenix.LiveView.Router - Phoenix LiveView v0.19.3

Phoenix.LiveView.Router

Provides LiveView routing for Phoenix routers.

 Anchor for this section

 Summary

 Functions

 fetch_live_flash(conn, _)

 Fetches the LiveView and merges with the controller flash.

 live(path, live_view, action \\ nil, opts \\ [])

 Defines a LiveView route.

 live_session(name, opts \\ [], list)

 Defines a live session for live redirects within a group of live routes.

 Anchor for this section

Functions

 Link to this function

 fetch_live_flash(conn, _)

 View Source

Fetches the LiveView and merges with the controller flash.
Replaces the default :fetch_flash plug used by Phoenix.Router.

 examples

 Examples

defmodule MyAppWeb.Router do
 use LiveGenWeb, :router
 import Phoenix.LiveView.Router

 pipeline :browser do
 ...
 plug :fetch_live_flash
 end
 ...
end

 Link to this macro

 live(path, live_view, action \\ nil, opts \\ [])

 View Source

 (macro)

Defines a LiveView route.
A LiveView can be routed to by using the live macro with a path and
the name of the LiveView:
live "/thermostat", ThermostatLive
By default, you can generate a route to this LiveView by using the live_path helper:
live_path(@socket, ThermostatLive)

 actions-and-live-navigation

 Actions and live navigation

It is common for a LiveView to have multiple states and multiple URLs.
For example, you can have a single LiveView that lists all articles on
your web app. For each article there is an "Edit" button which, when
pressed, opens up a modal on the same page to edit the article. It is a
best practice to use live navigation in those cases, so when you click
edit, the URL changes to "/articles/1/edit", even though you are still
within the same LiveView. Similarly, you may also want to show a "New"
button, which opens up the modal to create new entries, and you want
this to be reflected in the URL as "/articles/new".
In order to make it easier to recognize the current "action" your
LiveView is on, you can pass the action option when defining LiveViews
too:
live "/articles", ArticleLive.Index, :index
live "/articles/new", ArticleLive.Index, :new
live "/articles/:id/edit", ArticleLive.Index, :edit
When an action is given, the generated route helpers are named after
the LiveView itself (in the same way as for a controller). For the example
above, we will have:
article_index_path(@socket, :index)
article_index_path(@socket, :new)
article_index_path(@socket, :edit, 123)
The current action will always be available inside the LiveView as
the @live_action assign, that can be used to render a LiveComponent:
<%= if @live_action == :new do %>
 <.live_component module={MyAppWeb.ArticleLive.FormComponent} id="form" />
<% end %>
Or can be used to show or hide parts of the template:
<%= if @live_action == :edit do %>
 <%= render("form.html", user: @user) %>
<% end %>
Note that @live_action will be nil if no action is given on the route definition.

 options

 Options

	:container - an optional tuple for the HTML tag and DOM attributes to
be used for the LiveView container. For example: {:li, style: "color: blue;"}.
See Phoenix.Component.live_render/3 for more information and examples.

	:as - optionally configures the named helper. Defaults to :live when
using a LiveView without actions or defaults to the LiveView name when using
actions.

	:metadata - a map to optional feed metadata used on telemetry events and route info,
for example: %{route_name: :foo, access: :user}. This data can be retrieved by
calling Phoenix.Router.route_info/4 with the uri from the handle_params
callback. This can be used to customize a LiveView which may be invoked from
different routes.

	:private - an optional map of private data to put in the plug connection,
for example: %{route_name: :foo, access: :user}.

 examples

 Examples

defmodule MyApp.Router
 use Phoenix.Router
 import Phoenix.LiveView.Router

 scope "/", MyApp do
 pipe_through [:browser]

 live "/thermostat", ThermostatLive
 live "/clock", ClockLive
 live "/dashboard", DashboardLive, container: {:main, class: "row"}
 end
end

iex> MyApp.Router.Helpers.live_path(MyApp.Endpoint, MyApp.ThermostatLive)
"/thermostat"

 Link to this macro

 live_session(name, opts \\ [], list)

 View Source

 (macro)

Defines a live session for live redirects within a group of live routes.
live_session/3 allow routes defined with live/4 to support
live_redirect from the client with navigation purely over the existing
websocket connection. This allows live routes defined in the router to
mount a new root LiveView without additional HTTP requests to the server.

 security-considerations

 Security Considerations

You must always perform authentication and authorization in your LiveViews.
If your application handle both regular HTTP requests and LiveViews, then
you must perform authentication and authorization on both. This is important
because live_redirects do not go through the plug pipeline.
live_session can be used to draw boundaries between groups of LiveViews.
Redirecting between live_sessions will always force a full page reload
and establish a brand new LiveView connection. This is useful when LiveViews
require different authentication strategies or simply when they use different
root layouts (as the root layout is not updated between live redirects).
Please read our guide on the security model for a
detailed description and general tips on authentication, authorization,
and more.

 options

 Options

	:session - The optional extra session map or MFA tuple to be merged with
the LiveView session. For example, %{"admin" => true}, {MyMod, :session, []}.
For MFA, the function is invoked, passing the Plug.Conn struct is prepended
to the arguments list.

	:root_layout - The optional root layout tuple for the initial HTTP render to
override any existing root layout set in the router.

	:on_mount - The optional list of hooks to attach to the mount lifecycle of
each LiveView in the session. See Phoenix.LiveView.on_mount/1. Passing a
single value is also accepted.

	:layout - The optional layout the LiveView will be rendered in. Setting
this option overrides the layout via use Phoenix.LiveView. This option
may be overridden inside a LiveView by returning {:ok, socket, layout: ...}
from the mount callback

 examples

 Examples

scope "/", MyAppWeb do
 pipe_through :browser

 live_session :default do
 live "/feed", FeedLive, :index
 live "/status", StatusLive, :index
 live "/status/:id", StatusLive, :show
 end

 live_session :admin, on_mount: MyAppWeb.AdminLiveAuth do
 live "/admin", AdminDashboardLive, :index
 live "/admin/posts", AdminPostLive, :index
 end
end
In the example above, we have two live sessions. Live navigation between live views
in the different sessions is not possible and will always require a full page reload.
This is important in the example above because the :admin live session has authentication
requirements, defined by on_mount: MyAppWeb.AdminLiveAuth, that the other LiveViews
do not have.
If you have both regular HTTP routes (via get, post, etc) and live routes, then
you need to perform the same authentication and authorization rules in both.
For example, if you were to add a get "/admin/health" entry point inside the
:admin live session above, then you must create your own plug that performs the
same authentication and authorization rules as MyAppWeb.AdminLiveAuth, and then
pipe through it:
live_session :admin, on_mount: MyAppWeb.AdminLiveAuth do
 scope "/" do
 # Regular routes
 pipe_through [MyAppWeb.AdminPlugAuth]
 get "/admin/health", AdminHealthController, :index

 # Live routes
 live "/admin", AdminDashboardLive, :index
 live "/admin/posts", AdminPostLive, :index
 end
end
The opposite is also true, if you have regular http routes and you want to
add your own live routes, the same authentication and authorization checks
executed by the plugs listed in pipe_through must be ported to LiveViews
and be executed via on_mount hooks.

 Phoenix.LiveViewTest - Phoenix LiveView v0.19.3

Phoenix.LiveViewTest

Conveniences for testing function components as well as
LiveViews and LiveComponents.
Testing function components
There are two mechanisms for testing function components. Imagine the
following component:
def greet(assigns) do
 ~H"""
 <div>Hello, <%= @name %>!</div>
 """
end
You can test it by using render_component/3, passing the function
reference to the component as first argument:
import Phoenix.LiveViewTest

test "greets" do
 assert render_component(&MyComponents.greet/1, name: "Mary") ==
 "<div>Hello, Mary!</div>"
end
However, for complex components, often the simplest way to test them
is by using the ~H sigil itself:
import Phoenix.Component
import Phoenix.LiveViewTest

test "greets" do
 assigns = %{}
 assert rendered_to_string(~H"""
 <MyComponents.greet name="Mary" />
 """) ==
 "<div>Hello, Mary!</div>"
end
The difference is that we use rendered_to_string/1 to convert the rendered
template to a string for testing.
Testing LiveViews and LiveComponents
In LiveComponents and LiveView tests, we interact with views
via process communication in substitution of a browser.
Like a browser, our test process receives messages about the
rendered updates from the view which can be asserted against
to test the life-cycle and behavior of LiveViews and their
children.
Testing LiveViews
The life-cycle of a LiveView as outlined in the Phoenix.LiveView
docs details how a view starts as a stateless HTML render in a disconnected
socket state. Once the browser receives the HTML, it connects to the
server and a new LiveView process is started, remounted in a connected
socket state, and the view continues statefully. The LiveView test functions
support testing both disconnected and connected mounts separately, for example:
import Plug.Conn
import Phoenix.ConnTest
import Phoenix.LiveViewTest
@endpoint MyEndpoint

test "disconnected and connected mount", %{conn: conn} do
 conn = get(conn, "/my-path")
 assert html_response(conn, 200) =~ "<h1>My Disconnected View</h1>"

 {:ok, view, html} = live(conn)
end

test "redirected mount", %{conn: conn} do
 assert {:error, {:redirect, %{to: "/somewhere"}}} = live(conn, "my-path")
end
Here, we start by using the familiar Phoenix.ConnTest function, get/2 to
test the regular HTTP GET request which invokes mount with a disconnected socket.
Next, live/1 is called with our sent connection to mount the view in a connected
state, which starts our stateful LiveView process.
In general, it's often more convenient to test the mounting of a view
in a single step, provided you don't need the result of the stateless HTTP
render. This is done with a single call to live/2, which performs the
get step for us:
test "connected mount", %{conn: conn} do
 {:ok, _view, html} = live(conn, "/my-path")
 assert html =~ "<h1>My Connected View</h1>"
end
Testing Events
The browser can send a variety of events to a LiveView via phx- bindings,
which are sent to the handle_event/3 callback. To test events sent by the
browser and assert on the rendered side effect of the event, use the
render_* functions:
	render_click/1 - sends a phx-click event and value, returning
the rendered result of the handle_event/3 callback.

	render_focus/2 - sends a phx-focus event and value, returning
the rendered result of the handle_event/3 callback.

	render_blur/1 - sends a phx-blur event and value, returning
the rendered result of the handle_event/3 callback.

	render_submit/1 - sends a form phx-submit event and value, returning
the rendered result of the handle_event/3 callback.

	render_change/1 - sends a form phx-change event and value, returning
the rendered result of the handle_event/3 callback.

	render_keydown/1 - sends a form phx-keydown event and value, returning
the rendered result of the handle_event/3 callback.

	render_keyup/1 - sends a form phx-keyup event and value, returning
the rendered result of the handle_event/3 callback.

	render_hook/3 - sends a hook event and value, returning
the rendered result of the handle_event/3 callback.

For example:
{:ok, view, _html} = live(conn, "/thermo")

assert view
 |> element("button#inc")
 |> render_click() =~ "The temperature is: 31℉"
In the example above, we are looking for a particular element on the page
and triggering its phx-click event. LiveView takes care of making sure the
element has a phx-click and automatically sends its values to the server.
You can also bypass the element lookup and directly trigger the LiveView
event in most functions:
assert render_click(view, :inc, %{}) =~ "The temperature is: 31℉"
The element style is preferred as much as possible, as it helps LiveView
perform validations and ensure the events in the HTML actually matches the
event names on the server.
Testing regular messages
LiveViews are GenServer's under the hood, and can send and receive messages
just like any other server. To test the side effects of sending or receiving
messages, simply message the view and use the render function to test the
result:
send(view.pid, {:set_temp, 50})
assert render(view) =~ "The temperature is: 50℉"
Testing LiveComponents
LiveComponents can be tested in two ways. One way is to use the same
render_component/2 function as function components. This will mount
the LiveComponent and render it once, without testing any of its events:
assert render_component(MyComponent, id: 123, user: %User{}) =~
 "some markup in component"
However, if you want to test how components are mounted by a LiveView
and interact with DOM events, you must use the regular live/2 macro
to build the LiveView with the component and then scope events by
passing the view and a DOM selector in a list:
{:ok, view, html} = live(conn, "/users")
html = view |> element("#user-13 a", "Delete") |> render_click()
refute html =~ "user-13"
refute view |> element("#user-13") |> has_element?()
In the example above, LiveView will lookup for an element with
ID=user-13 and retrieve its phx-target. If phx-target points
to a component, that will be the component used, otherwise it will
fallback to the view.

 Anchor for this section

 Summary

 Functions

 assert_patch(view, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 Asserts a live patch will happen within timeout milliseconds.
The default timeout is ExUnit's
assert_receive_timeout (100 ms).

 assert_patch(view, to, timeout)

 Asserts a live patch will happen to a given path within timeout
milliseconds. The default timeout is 100.

 assert_patched(view, to)

 Asserts a live patch was performed, and returns the new path.

 assert_push_event(view, event, payload, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 Asserts an event will be pushed within timeout.
The default timeout is ExUnit's
assert_receive_timeout (100 ms).

 assert_redirect(view, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 Asserts a redirect will happen within timeout milliseconds.
The default timeout is ExUnit's
assert_receive_timeout (100 ms).

 assert_redirect(view, to, timeout)

 Asserts a redirect will happen to a given path within timeout milliseconds.
The default timeout is 100.

 assert_redirected(view, to)

 Asserts a redirect was performed.

 assert_reply(view, payload, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 Asserts a hook reply was returned from a handle_event callback.

 element(view, selector, text_filter \\ nil)

 Returns an element to scope a function to.

 file_input(view, form_selector, name, entries)

 Builds a file input for testing uploads within a form.

 find_live_child(parent, child_id)

 Gets the nested LiveView child by child_id from the parent LiveView.

 follow_redirect(reason, conn, to \\ nil)

 Follows the redirect from a render_* action or an {:error, redirect}
tuple.

 follow_trigger_action(form, conn)

 Receives a form_element and asserts that phx-trigger-action has been
set to true, following up on that request.

 form(view, selector, form_data \\ %{})

 Returns a form element to scope a function to.

 has_element?(element)

 Checks if the given element exists on the page.

 has_element?(view, selector, text_filter \\ nil)

 Checks if the given selector with text_filter is on view.

 live(conn, path \\ nil)

 Spawns a connected LiveView process.

 live_children(parent)

 Returns the current list of LiveView children for the parent LiveView.

 live_isolated(conn, live_view, opts \\ [])

 Spawns a connected LiveView process mounted in isolation as the sole rendered element.

 live_redirect(view, opts)

 Performs a live redirect from one LiveView to another.

 open_browser(view_or_element, open_fun \\ &open_with_system_cmd/1)

 Open the default browser to display current HTML of view_or_element.

 page_title(view)

 Returns the most recent title that was updated via a page_title assign.

 preflight_upload(upload)

 Performs a preflight upload request.

 put_connect_info(conn, params)

 deprecated

 put_connect_params(conn, params)

 Puts connect params to be used on LiveView connections.

 put_submitter(form, element_or_selector)

 Puts the submitter element_or_selector on the given form element.

 refute_redirected(view, to)

 Refutes a redirect to a given path was performed.

 render(view_or_element)

 Returns the HTML string of the rendered view or element.

 render_blur(element, value \\ %{})

 Sends a blur event given by element and returns the rendered result.

 render_blur(view, event, value)

 Sends a blur event to the view and returns the rendered result.

 render_change(element, value \\ %{})

 Sends a form change event given by element and returns the rendered result.

 render_change(view, event, value)

 Sends a form change event to the view and returns the rendered result.

 render_click(element, value \\ %{})

 Sends a click event given by element and returns the rendered result.

 render_click(view, event, value)

 Sends a click event to the view with value and returns the rendered result.

 render_component(component, assigns \\ Macro.escape(%{}), opts \\ [])

 Renders a component.

 render_focus(element, value \\ %{})

 Sends a focus event given by element and returns the rendered result.

 render_focus(view, event, value)

 Sends a focus event to the view and returns the rendered result.

 render_hook(view_or_element, event, value \\ %{})

 Sends a hook event to the view or an element and returns the rendered result.

 render_keydown(element, value \\ %{})

 Sends a keydown event given by element and returns the rendered result.

 render_keydown(view, event, value)

 Sends a keydown event to the view and returns the rendered result.

 render_keyup(element, value \\ %{})

 Sends a keyup event given by element and returns the rendered result.

 render_keyup(view, event, value)

 Sends a keyup event to the view and returns the rendered result.

 render_patch(view, path)

 Simulates a live_patch to the given path and returns the rendered result.

 render_submit(element, value \\ %{})

 Sends a form submit event given by element and returns the rendered result.

 render_submit(view, event, value)

 Sends a form submit event to the view and returns the rendered result.

 render_upload(upload, entry_name, percent \\ 100)

 Performs an upload of a file input and renders the result.

 rendered_to_string(rendered)

 Converts a rendered template to a string.

 submit_form(form, conn)

 Receives a form element and submits the HTTP request through the plug pipeline.

 with_target(view, target)

 Sets the target of the view for events.

 Anchor for this section

Functions

 Link to this function

 assert_patch(view, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 View Source

Asserts a live patch will happen within timeout milliseconds.
The default timeout is ExUnit's
assert_receive_timeout (100 ms).
It returns the new path.
To assert on the flash message, you can assert on the result of the
rendered LiveView.

 examples

 Examples

render_click(view, :event_that_triggers_patch)
assert_patch view

render_click(view, :event_that_triggers_patch)
assert_patch view, 30

render_click(view, :event_that_triggers_patch)
path = assert_patch view
assert path =~ ~r/path/�+/

 Link to this function

 assert_patch(view, to, timeout)

 View Source

Asserts a live patch will happen to a given path within timeout
milliseconds. The default timeout is 100.
It always returns :ok.
To assert on the flash message, you can assert on the result of the
rendered LiveView.

 examples

 Examples

render_click(view, :event_that_triggers_patch)
assert_patch view, "/path"

render_click(view, :event_that_triggers_patch)
assert_patch view, "/path", 30

 Link to this function

 assert_patched(view, to)

 View Source

Asserts a live patch was performed, and returns the new path.
To assert on the flash message, you can assert on the result of
the rendered LiveView.

 examples

 Examples

render_click(view, :event_that_triggers_redirect)
assert_patched view, "/path"

 Link to this macro

 assert_push_event(view, event, payload, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 View Source

 (macro)

Asserts an event will be pushed within timeout.
The default timeout is ExUnit's
assert_receive_timeout (100 ms).

 examples

 Examples

assert_push_event view, "scores", %{points: 100, user: "josé"}

 Link to this function

 assert_redirect(view, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 View Source

Asserts a redirect will happen within timeout milliseconds.
The default timeout is ExUnit's
assert_receive_timeout (100 ms).
It returns a tuple containing the new path and the flash messages from said
redirect, if any. Note the flash will contain string keys.

 examples

 Examples

render_click(view, :event_that_triggers_redirect)
{path, flash} = assert_redirect view
assert flash["info"] == "Welcome"
assert path =~ ~r/path\/\d+/

render_click(view, :event_that_triggers_redirect)
assert_redirect view, 30

 Link to this function

 assert_redirect(view, to, timeout)

 View Source

Asserts a redirect will happen to a given path within timeout milliseconds.
The default timeout is 100.
It returns the flash messages from said redirect, if any.
Note the flash will contain string keys.

 examples

 Examples

render_click(view, :event_that_triggers_redirect)
flash = assert_redirect view, "/path"
assert flash["info"] == "Welcome"

render_click(view, :event_that_triggers_redirect)
assert_redirect view, "/path", 30

 Link to this function

 assert_redirected(view, to)

 View Source

Asserts a redirect was performed.
It returns the flash messages from said redirect, if any. Note the
flash will contain string keys.

 examples

 Examples

render_click(view, :event_that_triggers_redirect)
flash = assert_redirected view, "/path"
assert flash["info"] == "Welcome"

 Link to this macro

 assert_reply(view, payload, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 View Source

 (macro)

Asserts a hook reply was returned from a handle_event callback.
The default timeout is ExUnit's
assert_receive_timeout (100 ms).

 examples

 Examples

assert_reply view, %{result: "ok", transaction_id: _}

 Link to this function

 element(view, selector, text_filter \\ nil)

 View Source

Returns an element to scope a function to.
It expects the current LiveView, a query selector, and a text filter.
An optional text filter may be given to filter the results by the query
selector. If the text filter is a string or a regex, it will match any
element that contains the string (including as a substring) or matches the
regex.
So a link containing the text "unopened" will match element("a", "opened").
To prevent this, a regex could specify that "opened" appear without the prefix "un".
For example, element("a", ~r{(?<!un)opened}).
But it may be clearer to add an HTML attribute to make the element easier to
select.
After the text filter is applied, only one element must remain, otherwise an
error is raised.
If no text filter is given, then the query selector itself must return
a single element.
assert view
 |> element("#term a:first-child", "Increment")
 |> render() =~ "Increment"
Attribute selectors are also supported, and may be used on special cases
like ids which contain periods:
assert view
 |> element(~s{[href="/foo"][id="foo.bar.baz"]})
 |> render() =~ "Increment"

 Link to this macro

 file_input(view, form_selector, name, entries)

 View Source

 (macro)

Builds a file input for testing uploads within a form.
Given the form DOM selector, the upload name, and a list of maps of client metadata
for the upload, the returned file input can be passed to render_upload/2.
Client metadata takes the following form:
	:last_modified - the last modified timestamp
	:name - the name of the file
	:content - the binary content of the file
	:size - the byte size of the content
	:type - the MIME type of the file
	:relative_path - for simulating webkitdirectory metadata

 examples

 Examples

avatar = file_input(lv, "#my-form-id", :avatar, [%{
 last_modified: 1_594_171_879_000,
 name: "myfile.jpeg",
 content: File.read!("myfile.jpg"),
 size: 1_396_009,
 type: "image/jpeg"
}])

assert render_upload(avatar, "myfile.jpeg") =~ "100%"

 Link to this function

 find_live_child(parent, child_id)

 View Source

Gets the nested LiveView child by child_id from the parent LiveView.

 examples

 Examples

{:ok, view, _html} = live(conn, "/thermo")
assert clock_view = find_live_child(view, "clock")
assert render_click(clock_view, :snooze) =~ "snoozing"

 Link to this macro

 follow_redirect(reason, conn, to \\ nil)

 View Source

 (macro)

Follows the redirect from a render_* action or an {:error, redirect}
tuple.
Imagine you have a LiveView that redirects on a render_click
event. You can make sure it immediately redirects after the
render_click action by calling follow_redirect/3:
live_view
|> render_click("redirect")
|> follow_redirect(conn)
Or in the case of an error tuple:
assert {:error, {:redirect, %{to: "/somewhere"}}} = result = live(conn, "my-path")
{:ok, view, html} = follow_redirect(result, conn)
follow_redirect/3 expects a connection as second argument.
This is the connection that will be used to perform the underlying
request.
If the LiveView redirects with a live redirect, this macro returns
{:ok, live_view, disconnected_html} with the content of the new
LiveView, the same as the live/3 macro. If the LiveView redirects
with a regular redirect, this macro returns {:ok, conn} with the
rendered redirected page. In any other case, this macro raises.
Finally, note that you can optionally assert on the path you are
being redirected to by passing a third argument:
live_view
|> render_click("redirect")
|> follow_redirect(conn, "/redirected/page")

 Link to this macro

 follow_trigger_action(form, conn)

 View Source

 (macro)

Receives a form_element and asserts that phx-trigger-action has been
set to true, following up on that request.
Imagine you have a LiveView that sends an HTTP form submission. Say that it
sets the phx-trigger-action to true, as a response to a submit event.
You can follow the trigger action like this:
form = form(live_view, selector, %{"form" => "data"})

First we submit the form. Optionally verify that phx-trigger-action
is now part of the form.
assert render_submit(form) =~ ~r/phx-trigger-action/

Now follow the request made by the form
conn = follow_trigger_action(form, conn)
assert conn.method == "POST"
assert conn.params == %{"form" => "data"}

 Link to this function

 form(view, selector, form_data \\ %{})

 View Source

Returns a form element to scope a function to.
It expects the current LiveView, a query selector, and the form data.
The query selector must return a single element.
The form data will be validated directly against the form markup and
make sure the data you are changing/submitting actually exists, failing
otherwise.

 examples

 Examples

assert view
 |> form("#term", user: %{name: "hello"})
 |> render_submit() =~ "Name updated"
This function is meant to mimic what the user can actually do, so you cannot
 set hidden input values. However, hidden values can be given when calling
 render_submit/2 or render_change/2, see their docs for examples.

 Link to this function

 has_element?(element)

 View Source

Checks if the given element exists on the page.

 examples

 Examples

assert view |> element("#some-element") |> has_element?()

 Link to this function

 has_element?(view, selector, text_filter \\ nil)

 View Source

Checks if the given selector with text_filter is on view.
See element/3 for more information.

 examples

 Examples

assert has_element?(view, "#some-element")

 Link to this macro

 live(conn, path \\ nil)

 View Source

 (macro)

Spawns a connected LiveView process.
If a path is given, then a regular get(conn, path)
is done and the page is upgraded to a LiveView. If
no path is given, it assumes a previously rendered
%Plug.Conn{} is given, which will be converted to
a LiveView immediately.

 examples

 Examples

{:ok, view, html} = live(conn, "/path")
assert view.module == MyLive
assert html =~ "the count is 3"

assert {:error, {:redirect, %{to: "/somewhere"}}} = live(conn, "/path")

 Link to this function

 live_children(parent)

 View Source

Returns the current list of LiveView children for the parent LiveView.
Children are returned in the order they appear in the rendered HTML.

 examples

 Examples

{:ok, view, _html} = live(conn, "/thermo")
assert [clock_view] = live_children(view)
assert render_click(clock_view, :snooze) =~ "snoozing"

 Link to this macro

 live_isolated(conn, live_view, opts \\ [])

 View Source

 (macro)

Spawns a connected LiveView process mounted in isolation as the sole rendered element.
Useful for testing LiveViews that are not directly routable, such as those
built as small components to be re-used in multiple parents. Testing routable
LiveViews is still recommended whenever possible since features such as
live navigation require routable LiveViews.

 options

 Options

	:session - the session to be given to the LiveView

All other options are forwarded to the LiveView for rendering. Refer to
Phoenix.Component.live_render/3 for a list of supported render
options.

 examples

 Examples

{:ok, view, html} =
 live_isolated(conn, MyAppWeb.ClockLive, session: %{"tz" => "EST"})
Use put_connect_params/2 to put connect params for a call to
Phoenix.LiveView.get_connect_params/1 in Phoenix.LiveView.mount/3:
{:ok, view, html} =
 conn
 |> put_connect_params(%{"param" => "value"})
 |> live_isolated(AppWeb.ClockLive, session: %{"tz" => "EST"})

 Link to this function

 live_redirect(view, opts)

 View Source

Performs a live redirect from one LiveView to another.
When redirecting between two LiveViews of the same live_session,
mounts the new LiveView and shutsdown the previous one, which
mimics general browser live navigation behaviour.
When attempting to navigate from a LiveView of a different
live_session, an error redirect condition is returned indicating
a failed live_redirect from the client.

 examples

 Examples

assert {:ok, page_live, _html} = live(conn, "/page/1")
assert {:ok, page2_live, _html} = live(conn, "/page/2")

assert {:error, {:redirect, _}} = live_redirect(page2_live, to: "/admin")

 Link to this function

 open_browser(view_or_element, open_fun \\ &open_with_system_cmd/1)

 View Source

Open the default browser to display current HTML of view_or_element.

 examples

 Examples

view
|> element("#term a:first-child", "Increment")
|> open_browser()

assert view
 |> form("#term", user: %{name: "hello"})
 |> open_browser()
 |> render_submit() =~ "Name updated"

 Link to this function

 page_title(view)

 View Source

Returns the most recent title that was updated via a page_title assign.

 examples

 Examples

render_click(view, :event_that_triggers_page_title_update)
assert page_title(view) =~ "my title"

 Link to this function

 preflight_upload(upload)

 View Source

Performs a preflight upload request.
Useful for testing external uploaders to retrieve the :external entry metadata.

 examples

 Examples

avatar = file_input(lv, "#my-form-id", :avatar, [%{name: ..., ...}, ...])
assert {:ok, %{ref: _ref, config: %{chunk_size: _}}} = preflight_upload(avatar)

 Link to this function

 put_connect_info(conn, params)

 View Source

 This function is deprecated. set the relevant connect_info fields in the connection instead.

 Link to this function

 put_connect_params(conn, params)

 View Source

Puts connect params to be used on LiveView connections.
See Phoenix.LiveView.get_connect_params/1.

 Link to this function

 put_submitter(form, element_or_selector)

 View Source

Puts the submitter element_or_selector on the given form element.
A submitter is an element that initiates the form's submit event on the client. When a submitter
is put on an element created with form/3 and then the form is submitted via render_submit/2,
the name/value pair of the submitter will be included in the submit event payload.
The given element or selector must exist within the form and match one of the following:
	A button or input element with type="submit".

	A button element without a type attribute.

 examples

 Examples

form = view |> form("#my-form")

assert form
 |> put_submitter("button[name=example]")
 |> render_submit() =~ "Submitted example"

 Link to this function

 refute_redirected(view, to)

 View Source

Refutes a redirect to a given path was performed.
It returns :ok if the specified redirect isn't already in the mailbox.

 examples

 Examples

render_click(view, :event_that_triggers_redirect_to_path)
:ok = refute_redirected view, "/wrong_path"

 Link to this function

 render(view_or_element)

 View Source

Returns the HTML string of the rendered view or element.
If a view is provided, the entire LiveView is rendered.
If a view after calling with_target/2 or an element
are given, only that particular context is returned.

 examples

 Examples

{:ok, view, _html} = live(conn, "/thermo")
assert render(view) =~ ~s|<button id="alarm">Snooze</div>|

assert view
 |> element("#alarm")
 |> render() == "Snooze"

 Link to this function

 render_blur(element, value \\ %{})

 View Source

Sends a blur event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-blur attribute in it. The event name
given set on phx-blur is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values can be given
with the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("#inactive")
 |> render_blur() =~ "Tap to wake"

 Link to this function

 render_blur(view, event, value)

 View Source

Sends a blur event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_blur(view, :inactive) =~ "Tap to wake"

 Link to this function

 render_change(element, value \\ %{})

 View Source

Sends a form change event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-change attribute in it. The event name
given set on phx-change is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values.
If you need to pass any extra values or metadata, such as the "_target"
parameter, you can do so by giving a map under the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("form")
 |> render_change(%{deg: 123}) =~ "123 exceeds limits"

Passing metadata
{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("form")
 |> render_change(%{_target: ["deg"], deg: 123}) =~ "123 exceeds limits"
As with render_submit/2, hidden input field values can be provided like so:
refute view
 |> form("#term", user: %{name: "hello"})
 |> render_change(%{user: %{"hidden_field" => "example"}}) =~ "can't be blank"

 Link to this function

 render_change(view, event, value)

 View Source

Sends a form change event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_change(view, :validate, %{deg: 123}) =~ "123 exceeds limits"

 Link to this function

 render_click(element, value \\ %{})

 View Source

Sends a click event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-click attribute in it. The event name
given set on phx-click is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values can be given
with the value argument.
If the element does not have a phx-click attribute but it is
a link (the <a> tag), the link will be followed accordingly:
	if the link is a live_patch, the current view will be patched
	if the link is a live_redirect, this function will return
{:error, {:live_redirect, %{to: url}}}, which can be followed
with follow_redirect/2
	if the link is a regular link, this function will return
{:error, {:redirect, %{to: url}}}, which can be followed
with follow_redirect/2

It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("button", "Increment")
 |> render_click() =~ "The temperature is: 30℉"

 Link to this function

 render_click(view, event, value)

 View Source

Sends a click event to the view with value and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temperature is: 30℉"
assert render_click(view, :inc) =~ "The temperature is: 31℉"

 Link to this macro

 render_component(component, assigns \\ Macro.escape(%{}), opts \\ [])

 View Source

 (macro)

Renders a component.
The first argument may either be a function component, as an
anonymous function:
assert render_component(&Weather.city/1, name: "Kraków") =~
 "some markup in component"
Or a stateful component as a module. In this case, this function
will mount, update, and render the component. The :id option is
a required argument:
assert render_component(MyComponent, id: 123, user: %User{}) =~
 "some markup in component"
If your component is using the router, you can pass it as argument:
assert render_component(MyComponent, %{id: 123, user: %User{}}, router: SomeRouter) =~
 "some markup in component"

 Link to this function

 render_focus(element, value \\ %{})

 View Source

Sends a focus event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-focus attribute in it. The event name
given set on phx-focus is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values can be given
with the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("#inactive")
 |> render_focus() =~ "Tap to wake"

 Link to this function

 render_focus(view, event, value)

 View Source

Sends a focus event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_focus(view, :inactive) =~ "Tap to wake"

 Link to this function

 render_hook(view_or_element, event, value \\ %{})

 View Source

Sends a hook event to the view or an element and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_hook(view, :refresh, %{deg: 32}) =~ "The temp is: 32℉"
If you are pushing events from a hook to a component, then you must pass
an element, created with element/3, as first argument and it must point
to a single element on the page with a phx-target attribute in it:
{:ok, view, _html} = live(conn, "/thermo")
assert view
 |> element("#thermo-component")
 |> render_hook(:refresh, %{deg: 32}) =~ "The temp is: 32℉"

 Link to this function

 render_keydown(element, value \\ %{})

 View Source

Sends a keydown event given by element and returns the rendered result.
The element is created with element/3 and must point to a single element
on the page with a phx-keydown or phx-window-keydown attribute in it.
The event name given set on phx-keydown is then sent to the appropriate
LiveView (or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values can be given with
the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert view |> element("#inc") |> render_keydown() =~ "The temp is: 31℉"

 Link to this function

 render_keydown(view, event, value)

 View Source

Sends a keydown event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_keydown(view, :inc) =~ "The temp is: 31℉"

 Link to this function

 render_keyup(element, value \\ %{})

 View Source

Sends a keyup event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-keyup or phx-window-keyup attribute
in it. The event name given set on phx-keyup is then sent to the
appropriate LiveView (or component if phx-target is set accordingly).
All phx-value-* entries in the element are sent as values. Extra values
can be given with the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert view |> element("#inc") |> render_keyup() =~ "The temp is: 31℉"

 Link to this function

 render_keyup(view, event, value)

 View Source

Sends a keyup event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_keyup(view, :inc) =~ "The temp is: 31℉"

 Link to this function

 render_patch(view, path)

 View Source

Simulates a live_patch to the given path and returns the rendered result.

 Link to this function

 render_submit(element, value \\ %{})

 View Source

Sends a form submit event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-submit attribute in it. The event name
given set on phx-submit is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values, including hidden
input fields, can be given with the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("form")
 |> render_submit(%{deg: 123, avatar: upload}) =~ "123 exceeds limits"
To submit a form along with some with hidden input values:
assert view
 |> form("#term", user: %{name: "hello"})
 |> render_submit(%{user: %{"hidden_field" => "example"}}) =~ "Name updated"
To submit a form by a specific submit element via put_submitter/2:
assert view
 |> form("#term", user: %{name: "hello"})
 |> put_submitter("button[name=example_action]")
 |> render_submit() =~ "Action taken"

 Link to this function

 render_submit(view, event, value)

 View Source

Sends a form submit event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 examples

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_submit(view, :refresh, %{deg: 32}) =~ "The temp is: 32℉"

 Link to this function

 render_upload(upload, entry_name, percent \\ 100)

 View Source

Performs an upload of a file input and renders the result.
See file_input/4 for details on building a file input.

 examples

 Examples

Given the following LiveView template:
<%= for entry <- @uploads.avatar.entries do %>
 <%= entry.name %>: <%= entry.progress %>%
<% end %>
Your test case can assert the uploaded content:
avatar = file_input(lv, "#my-form-id", :avatar, [
 %{
 last_modified: 1_594_171_879_000,
 name: "myfile.jpeg",
 content: File.read!("myfile.jpg"),
 size: 1_396_009,
 type: "image/jpeg"
 }
])

assert render_upload(avatar, "myfile.jpeg") =~ "100%"
By default, the entire file is chunked to the server, but an optional
percentage to chunk can be passed to test chunk-by-chunk uploads:
assert render_upload(avatar, "myfile.jpeg", 49) =~ "49%"
assert render_upload(avatar, "myfile.jpeg", 51) =~ "100%"
Before making assertions about the how the upload is consumed server-side,
you will need to call render_submit/1.

 Link to this function

 rendered_to_string(rendered)

 View Source

Converts a rendered template to a string.

 examples

 Examples

import Phoenix.Component
import Phoenix.LiveViewTest

test "greets" do
 assigns = %{}
 assert rendered_to_string(~H"""
 <MyComponents.greet name="Mary" />
 """) ==
 "<div>Hello, Mary!</div>"
end

 Link to this macro

 submit_form(form, conn)

 View Source

 (macro)

Receives a form element and submits the HTTP request through the plug pipeline.
Imagine you have a LiveView that validates form data, but submits the form to
a controller via the normal form action attribute. This is especially useful
in scenarios where the result of a form submit needs to write to the plug session.
You can follow submit the form with the %Plug.Conn{}, like this:
form = form(live_view, selector, %{"form" => "data"})

Now submit the LiveView form to the plug pipeline
conn = submit_form(form, conn)
assert conn.method == "POST"
assert conn.params == %{"form" => "data"}

 Link to this function

 with_target(view, target)

 View Source

Sets the target of the view for events.
This emulates phx-target directly in tests, without
having to dispatch the event to a specific element.
This can be useful for invoking events to one or
multiple components at the same time:
view
|> with_target("#user-1,#user-2")
|> render_click("Hide", %{})

 Phoenix.LiveView.HTMLFormatter - Phoenix LiveView v0.19.3

Phoenix.LiveView.HTMLFormatter

Format HEEx templates from .heex files or ~H sigils.
This is a mix format plugin.
Note: The HEEx HTML Formatter requires Elixir v1.13.4 or later.

Setup
Add it as plugin to your .formatter.exs file and make sure to put
theheex extension in the inputs option.
[
 plugins: [Phoenix.LiveView.HTMLFormatter],
 inputs: ["*.{heex,ex,exs}", "priv/*/seeds.exs", "{config,lib,test}/**/*.{heex,ex,exs}"],
 # ...
]
For umbrella projects
In umbrella projects you must also change two files at the umbrella root,
add :phoenix_live_view to your deps in the mix.exs file
and add plugins: [Phoenix.LiveView.HTMLFormatter] in the .formatter.exs file.
This is because the formatter does not attempt to load the dependencies of
all children applications.

Editor support
Most editors that support mix format integration should automatically format
.heex and ~H templates. Other editors may require custom integration or
even provide additional functionality. Here are some reference posts:
	Formatting HEEx templates in VS Code

Options
	:line_length - The Elixir formatter defaults to a maximum line length
of 98 characters, which can be overwritten with the :line_length option
in your .formatter.exs file.

	:heex_line_length - change the line length only for the HEEx formatter.
[
 # ...omitted
 heex_line_length: 300
]

Formatting
This formatter tries to be as consistent as possible with the Elixir formatter.
Given HTML like this:
 <section><h1> <%= @user.name %></h1></section>
It will be formatted as:
<section>
 <h1><%= @user.name %></h1>
</section>
A block element will go to the next line, while inline elements will be kept in the current line
as long as they fit within the configured line length.
The following links list all block and inline elements.
	https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements#elements
	https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elements#list_of_inline_elements

It will also keep inline elements in their own lines if you intentionally write them this way:
<section>
 <h1>
 <%= @user.name %>
 </h1>
</section>
This formatter will place all attributes on their own lines when they do not all fit in the
current line. Therefore this:
<section id="user-section-id" class="sm:focus:block flex w-full p-3" phx-click="send-event">
 <p>Hi</p>
</section>
Will be formatted to:
<section
 id="user-section-id"
 class="sm:focus:block flex w-full p-3"
 phx-click="send-event"
>
 <p>Hi</p>
</section>
This formatter does not format Elixir expressions with do...end.
The content within it will be formatted accordingly though. Therefore, the given
input:
<%= live_redirect(
 to: "/my/path",
 class: "my class"
) do %>
 My Link
<% end %>
Will be formatted to
<%= live_redirect(
 to: "/my/path",
 class: "my class"
) do %>
 My Link
<% end %>
Note that only the text My Link has been formatted.
Intentional new lines
The formatter will keep intentional new lines. However, the formatter will
always keep a maximum of one line break in case you have multiple ones:
<p>
 text

 text
</p>
Will be formatted to:
<p>
 text

 text
</p>
Inline elements
We don't format inline elements when there is a text without whitespace before
or after the element. Otherwise it would compromise what is rendered adding
an extra whitespace.
This is the list of inline elements:
https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elements#list_of_inline_elements
Skip formatting
In case you don't want part of your HTML to be automatically formatted.
You can use the special phx-no-format attribute so that the formatter will
skip the element block. Note that this attribute will not be rendered.
Therefore:
<.textarea phx-no-format>My content</.textarea>
Will be kept as is your code editor, but rendered as:
<textarea>My content</textarea>
Comments
Inline comments <%# comment %> are deprecated and the formatter will discard them
silently from templates. You must change them to the multi-line comment
<%!-- comment --%> on Elixir v1.14+ or introduce a space between <% and #,
such as <% # comment %>.

 Anchor for this section

 Summary

 Functions

 is_tag_open(tag_type)

 Anchor for this section

Functions

 Link to this macro

 is_tag_open(tag_type)

 View Source

 (macro)

 Phoenix.LiveView.Logger - Phoenix LiveView v0.19.3

Phoenix.LiveView.Logger

Instrumenter to handle logging of Phoenix.LiveView and Phoenix.LiveComponent life-cycle events.
Installation
The logger is installed automatically when Live View starts.
By default, the log level is set to :debug.
Module configuration
The log level can be overridden for an individual Live View module:
use Phoenix.LiveView, log: :debug
To disable logging for an individual Live View module:
use Phoenix.LiveView, log: false
Telemetry
The following Phoenix.LiveView and Phoenix.LiveComponent events are logged:
	[:phoenix, :live_view, :mount, :start]
	[:phoenix, :live_view, :mount, :stop]
	[:phoenix, :live_view, :handle_params, :start]
	[:phoenix, :live_view, :handle_params, :stop]
	[:phoenix, :live_view, :handle_event, :start]
	[:phoenix, :live_view, :handle_event, :stop]
	[:phoenix, :live_component, :handle_event, :start]
	[:phoenix, :live_component, :handle_event, :stop]

See the Telemetry guide for more information.
Parameter filtering
If enabled, Phoenix.LiveView.Logger will filter parameters based on the configuration of Phoenix.Logger.

 Phoenix.LiveView.Socket - Phoenix LiveView v0.19.3

Phoenix.LiveView.Socket

The LiveView socket for Phoenix Endpoints.
This is typically mounted directly in your endpoint.
socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [session: @session_options]]
To share an underlying transport connection between regular
Phoenix channels and LiveView processes, use Phoenix.LiveView.Socket
from your own MyAppWeb.UserSocket module.
Next, declare your channel definitions and optional connect/3, and
id/1 callbacks to handle your channel specific needs, then mount
your own socket in your endpoint:
socket "/live", MyAppWeb.UserSocket,
 websocket: [connect_info: [session: @session_options]]

 Anchor for this section

 Summary

 Types

 assigns()

 The data in a LiveView as stored in the socket.

 assigns_not_in_socket()

 Struct returned when assigns is not in the socket.

 fingerprints()

 t()

 Anchor for this section

Types

 Link to this type

 assigns()

 View Source

 @type assigns() :: map() | assigns_not_in_socket()

The data in a LiveView as stored in the socket.

 Link to this opaque

 assigns_not_in_socket()

 View Source

 (opaque)

 @opaque assigns_not_in_socket()

Struct returned when assigns is not in the socket.

 Link to this type

 fingerprints()

 View Source

 @type fingerprints() :: {nil, map()} | {binary(), map()}

 Link to this type

 t()

 View Source

 @type t() :: %Phoenix.LiveView.Socket{
 assigns: assigns(),
 endpoint: module(),
 fingerprints: fingerprints(),
 host_uri: URI.t() | :not_mounted_at_router,
 id: binary(),
 parent_pid: nil | pid(),
 private: map(),
 redirected: nil | tuple(),
 root_pid: pid(),
 router: module(),
 transport_pid: pid() | nil,
 view: module()
}

 Phoenix.LiveViewTest.Element - Phoenix LiveView v0.19.3

Phoenix.LiveViewTest.Element

The struct returned by Phoenix.LiveViewTest.element/3.
The following public fields represent the element:
	selector - The query selector
	text_filter - The text to further filter the element

See the Phoenix.LiveViewTest documentation for usage.

 Phoenix.LiveViewTest.Upload - Phoenix LiveView v0.19.3

Phoenix.LiveViewTest.Upload

The struct returned by Phoenix.LiveViewTest.file_input/4.
The following public fields represent the element:
	selector - The query selector
	entries - The list of selected file entries

See the Phoenix.LiveViewTest documentation for usage.

 Phoenix.LiveViewTest.View - Phoenix LiveView v0.19.3

Phoenix.LiveViewTest.View

The struct for testing LiveViews.
The following public fields represent the LiveView:
	id - The DOM id of the LiveView
	module - The module of the running LiveView
	pid - The Pid of the running LiveView
	endpoint - The endpoint for the LiveView
	target - The target to scope events to

See the Phoenix.LiveViewTest documentation for usage.

 Phoenix.LiveView.UploadConfig - Phoenix LiveView v0.19.3

Phoenix.LiveView.UploadConfig

The struct representing an upload.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Phoenix.LiveView.UploadConfig{
 accept: list() | :any,
 acceptable_exts: MapSet.t(),
 acceptable_types: MapSet.t(),
 allowed?: boolean(),
 auto_upload?: boolean(),
 chunk_size: term(),
 chunk_timeout: term(),
 cid: :unregistered | nil | integer(),
 client_key: String.t(),
 entries: list(),
 entry_refs_to_metas: %{required(String.t()) => map()},
 entry_refs_to_pids: %{required(String.t()) => pid() | :unregistered | :done},
 errors: list(),
 external:
 (Phoenix.LiveView.UploadEntry.t(), Phoenix.LiveView.Socket.t() ->
 {:ok | :error, meta :: %{uploader: String.t()},
 Phoenix.LiveView.Socket.t()})
 | false,
 max_entries: pos_integer(),
 max_file_size: pos_integer(),
 name: atom() | String.t(),
 progress_event:
 (name :: atom() | String.t(),
 Phoenix.LiveView.UploadEntry.t(),
 Phoenix.LiveView.Socket.t() ->
 {:noreply, Phoenix.LiveView.Socket.t()})
 | nil,
 ref: String.t()
}

 Phoenix.LiveView.UploadEntry - Phoenix LiveView v0.19.3

Phoenix.LiveView.UploadEntry

The struct representing an upload entry.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Phoenix.LiveView.UploadEntry{
 cancelled?: boolean(),
 client_last_modified: integer() | nil,
 client_name: String.t() | nil,
 client_relative_path: String.t() | nil,
 client_size: integer() | nil,
 client_type: String.t() | nil,
 done?: boolean(),
 preflighted?: term(),
 progress: integer(),
 ref: String.t() | nil,
 upload_config: String.t() | :atom,
 upload_ref: String.t(),
 uuid: String.t() | nil,
 valid?: boolean()
}

 Phoenix.LiveComponent.CID - Phoenix LiveView v0.19.3

Phoenix.LiveComponent.CID

The struct representing an internal unique reference to the component instance,
available as the @myself assign in stateful components.
Read more about the uses of @myself in the Phoenix.LiveComponent docs.

 Phoenix.LiveView.Component - Phoenix LiveView v0.19.3

Phoenix.LiveView.Component

The struct returned by components in .heex templates.
This component is never meant to be output directly
into the template. It should always be handled by
the diffing algorithm.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Phoenix.LiveView.Component{
 assigns: map(),
 component: module(),
 id: binary()
}

 Phoenix.LiveView.Comprehension - Phoenix LiveView v0.19.3

Phoenix.LiveView.Comprehension

The struct returned by for-comprehensions in .heex templates.
See a description about its fields and use cases
in Phoenix.LiveView.Engine docs.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Phoenix.LiveView.Comprehension{
 dynamics: [
 [
 iodata()
 | Phoenix.LiveView.Rendered.t()
 | t()
 | Phoenix.LiveView.Component.t()
]
],
 fingerprint: integer(),
 static: [String.t()],
 stream: String.t() | atom() | nil
}

 Phoenix.LiveView.Engine - Phoenix LiveView v0.19.3

Phoenix.LiveView.Engine

An EEx template engine that tracks changes.
This is often used by Phoenix.LiveView.TagEngine which also adds
HTML validation. In the documentation below, we will explain how it
works internally. For user-facing documentation, see Phoenix.LiveView.
Phoenix.LiveView.Rendered
Whenever you render a live template, it returns a
Phoenix.LiveView.Rendered structure. This structure has
three fields: :static, :dynamic and :fingerprint.
The :static field is a list of literal strings. This
allows the Elixir compiler to optimize this list and avoid
allocating its strings on every render.
The :dynamic field contains a function that takes a boolean argument
(see "Tracking changes" below), and returns a list of dynamic content.
Each element in the list is either one of:
	iodata - which is the dynamic content
	nil - the dynamic content did not change
	another Phoenix.LiveView.Rendered struct, see "Nesting and fingerprinting" below
	a Phoenix.LiveView.Comprehension struct, see "Comprehensions" below
	a Phoenix.LiveView.Component struct, see "Component" below

When you render a live template, you can convert the
rendered structure to iodata by alternating the static
and dynamic fields, always starting with a static entry
followed by a dynamic entry. The last entry will always
be static too. So the following structure:
%Phoenix.LiveView.Rendered{
 static: ["foo", "bar", "baz"],
 dynamic: fn track_changes? -> ["left", "right"] end
}
Results in the following content to be sent over the wire
as iodata:
["foo", "left", "bar", "right", "baz"]
This is also what calling Phoenix.HTML.Safe.to_iodata/1
with a Phoenix.LiveView.Rendered structure returns.
Of course, the benefit of live templates is exactly
that you do not need to send both static and dynamic
segments every time. So let's talk about tracking changes.
Tracking changes
By default, a live template does not track changes.
Change tracking can be enabled by including a changed
map in the assigns with the key __changed__ and passing
true to the dynamic parts. The map should contain
the name of any changed field as key and the boolean
true as value. If a field is not listed in __changed__,
then it is always considered unchanged.
If a field is unchanged and live believes a dynamic
expression no longer needs to be computed, its value
in the dynamic list will be nil. This information
can be leveraged to avoid sending data to the client.
Nesting and fingerprinting
Phoenix.LiveView also tracks changes across live
templates. Therefore, if your view has this:
<%= render "form.html", assigns %>
Phoenix will be able to track what is static and dynamic
across templates, as well as what changed. A rendered
nested live template will appear in the dynamic
list as another Phoenix.LiveView.Rendered structure,
which must be handled recursively.
However, because the rendering of live templates can
be dynamic in itself, it is important to distinguish
which live template was rendered. For example,
imagine this code:
<%= if something?, do: render("one.html", assigns), else: render("other.html", assigns) %>
To solve this, all Phoenix.LiveView.Rendered structs
also contain a fingerprint field that uniquely identifies
it. If the fingerprints are equal, you have the same
template, and therefore it is possible to only transmit
its changes.
Comprehensions
Another optimization done by live templates is to
track comprehensions. If your code has this:
<%= for point <- @points do %>
 x: <%= point.x %>
 y: <%= point.y %>
<% end %>
Instead of rendering all points with both static and
dynamic parts, it returns a Phoenix.LiveView.Comprehension
struct with the static parts, that are shared across all
points, and a list of dynamics to be interpolated inside
the static parts. If @points is a list with %{x: 1, y: 2}
and %{x: 3, y: 4}, the above expression would return:
%Phoenix.LiveView.Comprehension{
 static: ["\n x: ", "\n y: ", "\n"],
 dynamics: [
 ["1", "2"],
 ["3", "4"]
]
}
This allows live templates to drastically optimize
the data sent by comprehensions, as the static parts
are emitted only once, regardless of the number of items.
The list of dynamics is always a list of iodatas or components,
as we don't perform change tracking inside the comprehensions
themselves. Similarly, comprehensions do not have fingerprints
because they are only optimized at the root, so conditional
evaluation, as the one seen in rendering, is not possible.
The only possible outcome for a dynamic field that returns a
comprehension is nil.
Components
Live also supports stateful components defined with
Phoenix.LiveComponent. Since they are stateful, they are always
handled lazily by the diff algorithm.

 Phoenix.LiveView.HTMLEngine - Phoenix LiveView v0.19.3

Phoenix.LiveView.HTMLEngine

The HTMLEngine that powers .heex templates and the ~H sigil.
It works by adding a HTML parsing and validation layer on top
of Phoenix.HTML.TagEngine.

 Phoenix.LiveView.Rendered - Phoenix LiveView v0.19.3

Phoenix.LiveView.Rendered

The struct returned by .heex templates.
See a description about its fields and use cases
in Phoenix.LiveView.Engine docs.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Phoenix.LiveView.Rendered{
 caller:
 :not_available
 | {module(), function :: {atom(), non_neg_integer()}, file :: String.t(),
 line :: pos_integer()},
 dynamic:
 (boolean() ->
 [
 nil
 | iodata()
 | t()
 | Phoenix.LiveView.Comprehension.t()
 | Phoenix.LiveView.Component.t()
]),
 fingerprint: integer(),
 root: nil | true | false,
 static: [String.t()]
}

 Phoenix.LiveView.TagEngine - Phoenix LiveView v0.19.3

Phoenix.LiveView.TagEngine behaviour

An EEx engine that understands tags.
This cannot be directly used by Phoenix applications.
Instead, it is the building block by engines such as
Phoenix.LiveView.HTMLEngine.
It is typically invoked like this:
EEx.compile_string(source,
 engine: Phoenix.LiveView.TagEngine,
 line: 1,
 file: path,
 caller: __CALLER__,
 source: source,
 tag_handler: FooBarEngine
)
Where :tag_handler implements the behaviour defined by this module.

 Anchor for this section

 Summary

 Callbacks

 classify_type(name)

 Classify the tag type from the given binary.

 void?(name)

 Returns if the given binary is either void or not.

 Functions

 component(func, assigns, caller)

 Renders a component defined by the given function.

 inner_block(name, list)

 Define a inner block, generally used by slots.

 Anchor for this section

Callbacks

 Link to this callback

 classify_type(name)

